Math, asked by vijmeena1999x, 2 months ago

if tan square theta - 3 sec square theta + 3 = 0 , then what is the value of sin theta + cos theta​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:0\degree  < \theta  < 90\degree

and

\rm :\longmapsto\: {tan}^{2}\theta  - 3sec\theta  + 3 = 0

We know,

 \boxed{ \bf{ {sec}^{2}\theta  -  {tan}^{2} \theta  = 1}}

So, using this

\rm :\longmapsto\: {sec}^{2}\theta  - 1 - 3sec\theta  + 3 = 0

\rm :\longmapsto\: {sec}^{2}\theta - 3sec\theta  + 2= 0

\rm :\longmapsto\: {sec}^{2}\theta - 2sec\theta   - sec\theta + 2= 0

\rm :\longmapsto\:sec\theta (sec\theta  - 2) - 1(sec\theta  - 2) = 0

\rm :\longmapsto\:(sec\theta  - 1)(sec\theta  - 2) = 0

\rm :\implies\:sec\theta  = 1 \:  \: \rm \implies\:\theta  = 0\degree  \:  \{rejected \}

or

\rm \implies\:sec\theta  = 2 \:  \: \rm \implies\:\theta  = 60\degree

Now,

Consider,

\rm :\longmapsto\:sin\theta  + cot\theta

\rm \:  \:  =  \:sin60\degree  + cot60\degree

\rm \:  \:  =  \:\dfrac{ \sqrt{3} }{2}  + \dfrac{1}{ \sqrt{3} }

\rm \:  \:  =  \:\dfrac{ \sqrt{3} }{2}  + \dfrac{1}{ \sqrt{3} } \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }

\rm \:  \:  =  \:\dfrac{ \sqrt{3} }{2}  + \dfrac{ \sqrt{3} }{ 3 }

\rm \:  \:  =  \:\dfrac{3 \sqrt{3} + 2 \sqrt{3}  }{6}

\rm \:  \:  =  \:\dfrac{5 \sqrt{3}}{6}

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{\boxed{\bf{ sin\theta  + cot\theta \rm \:  \:  =  \:\dfrac{5 \sqrt{3}}{6}}}}

So,

Option (a) is correct.

Additional Information :-

 \boxed{ \bf{ {sin}^{2} x +  {cos}^{2} x = 1}}

 \boxed{ \bf{ {sec}^{2} x  -   {tan}^{2} x = 1}}

 \boxed{ \bf{ {cosec}^{2} x  -   {cot}^{2} x = 1}}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions