if tan square theta + cot square theta is equal to 10 by 3 then letters determine the value of tan theta + cot theta and tan theta minus cot theta and from this letter write the value of tan theta
Answers
Answered by
2
Answer:
tanθ = 1/√3
Step-by-step explanation:
given, tan²θ+cot²θ = 10/3
for conveniency, let us take tan²θ = x
so, given, x+ (1/x) = 10/3
=> (x²+1)/x = 10/3
=> 3(x²+1) = 10(x)
=> 3x²-10x+3 = 0
=> 3x²-x -9x+3 = 0
=> x(3x-1) -3(3x-1) = 0
=> (3x-1)(x-3) = 0
=> 3x-1 = 0 or x-3=0
so, x=1/3 or x=3
ie., tan²θ = 1/3 or tan²θ=3
=> tanθ = 1/√3 or tanθ= √3
so, if tanθ = 1/√3 then cotθ=√3 and vice versa
=> tanθ+cotθ = 1/√3+√3
= (1+√3²)/√3
= (1+3)/√3
= 4/√3
and tanθ-cotθ = 1/√3-√3
= (1-√3²)/√3
= (1-3)/√3
= -2/√3
consider , (tanθ+cotθ)+(tanθ-cotθ) = (4/√3)+(-2/√3)
=> 2tanθ = (4-2)/√3
=> 2tanθ = 2/√3
=> tanθ = 1/√3
=> θ = 30°
Similar questions