If tanα tanβ = 1, then the value of cos(α + β) is
Answers
Answered by
2
Answer:
0
Step-by-step explanation:
Tan30* tan 60 = 1/root3 * root3 = 1
so alpha = 30 and beta = 60
And cos( 30+60) = cos90 = 0
Answered by
0
If tanα tanβ = 1, then the value of cos (α+β) is equal to 0.
Given:
tanα tanβ = 1
To Find:
cos (α+β)
Solution:
∵ tanαtanβ = 1
→ (sinα sinβ)/(cosα cosβ) = 1
∴ sinα sinβ = cosα cosβ
→By the formula: cos (α+β) = cosαcosβ - sinαsinβ
→cos (α+β) = cosα cosβ - sinα sinβ = sinα sinβ - sinα sinβ = 0
∴ cos (α+β) = 0
Hence, if tanαtanβ = 1, then the value of cos (α+β) is equal to 0.
#SPJ2
Similar questions
Math,
9 days ago
Math,
9 days ago
Math,
9 days ago
Environmental Sciences,
19 days ago
Math,
9 months ago