Math, asked by anshv3941, 1 year ago

If tan tange =1, then find sec tange ​

Attachments:

Answers

Answered by Brâiñlynêha
13

\huge\mathbb{SOLUTION:-}

\sf tan\theta =1

  • This the value of tan 45°
  • means :-

\sf tan 45{}^{\circ}= 1\\ \\ \sf\implies \theta =45{}^{\circ}

  • we have to find the value of

  • \sf sec\theta

  • Means sec 45°

\sf\implies  sec \theta =\dfrac{1}{cos\:\theta}\\ \\ \sf\implies\:\: or\: \theta=45{}^{\circ}\\ \\ \sf\implies sec45{}^{\circ}=\dfrac{1}{cos45{}^{\circ}} \\ \\ \sf{\blue{cos 45{}^{\circ}=\dfrac{1}{\sqrt{2}}}}\\ \\ \sf\implies sec 45{}^{\circ}=\dfrac{1}{\dfrac{1}{\sqrt{2}}}\\ \\ \sf\implies sec\: 45{}^{\circ}= \sqrt{2}

  • So the value of

\boxed{\sf{sec\:\theta= \sqrt{2}}}

Answered by Anonymous
15

\huge\underline\mathrm{Question-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

If \sf{Tan\theta=1}

Find \sf{Sec\theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\huge\underline\mathrm{Answer-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\huge{\boxed{\mathrm{\red{Sec\theta=\sqrt2}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\huge\underline\mathrm{Solution-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

It is given that, \sf{Tan\theta=1}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

And we know that, Tan45° = 1,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

so we can say that the value of \theta is 45°.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now, we have to find the value of \sf{Sec\theta},

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Also, \sf{Sec\theta} = \sf{\dfrac{1}{Cos\theta}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

And the value of \sf{Cos45°} is \sf{\dfrac{1}{\sqrt2}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies Sec45° = \dfrac{1}{ \frac{1}{ \sqrt{2} } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By reciprocate, we get,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Sec45° = √2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\huge{\boxed{\mathrm{\red{\therefore\:Sec\theta=\sqrt2}}}}

Similar questions