if tan teeta +cot teeta =2 find tge value of tan^2teeta+ cot^2teeta
Answers
Answered by
1
Given,
tan θ + cot θ = 2
Squaring on both sides,
(tan θ + cot θ )² = 2²
tan²θ + cot²θ + 2(tanθ)(cotθ) = 4
tan²θ + cot²θ + 2(tanθ)(1/tanθ) = 4
tan²θ + cot²θ + 2 = 4
tan²θ + cot²θ = 4 - 2
tan²θ + cot²θ = 2
Hope it helps
tan θ + cot θ = 2
Squaring on both sides,
(tan θ + cot θ )² = 2²
tan²θ + cot²θ + 2(tanθ)(cotθ) = 4
tan²θ + cot²θ + 2(tanθ)(1/tanθ) = 4
tan²θ + cot²θ + 2 = 4
tan²θ + cot²θ = 4 - 2
tan²θ + cot²θ = 2
Hope it helps
RockstarMoonBhushan:
Hiii and thanks also
Answered by
2
Given,
tanθ+cotθ=2
REQUIRED TO FIND :- tan²θ+cot²θ=
Formulae :-
1) a² + b²= ( a+ b)² - 2 ab.
2) tan θ. cot θ = 1
Process :-
tan²θ+cot² θ
=(tanθ+cotθ)²-2tanθcotθ
=2²-2
=4-2
=2
hope helped !!
tanθ+cotθ=2
REQUIRED TO FIND :- tan²θ+cot²θ=
Formulae :-
1) a² + b²= ( a+ b)² - 2 ab.
2) tan θ. cot θ = 1
Process :-
tan²θ+cot² θ
=(tanθ+cotθ)²-2tanθcotθ
=2²-2
=4-2
=2
hope helped !!
Similar questions