English, asked by PranaviLahari, 4 months ago


If tan teeta = p/q then find p sin teeta – q cos teeta /
p sin teeta + q cos teeta .


WHO WILL ANSWER THE RIGHT ANSWER I WILL MAKE THEM AS BRAINLLISET ANSWER​

Answers

Answered by BrainlyIAS
5

Given :

 \bullet\ \; \sf \blue{tan\ \theta = \dfrac{p}{q}}

To Find :

\bullet\ \; \sf \red{\dfrac{ p\ sin\ \theta -q\ cos\ \theta }{p\ sin\ \theta +q\ cos\ \theta }}

Solution :

\sf \dfrac{ p\ sin\ \theta-q\ cos\ \theta }{ p\ sin\ \theta+q\ cos\ \theta }

By taking cos θ common , we get ,

:\implies \sf \dfrac{cos\ \theta\ \bigg(p\ \frac{sin\ \theta}{cos\ \theta}- q\ \frac{cos\ \theta}{cos\ \theta} \bigg) }{ cos\ \theta\ \bigg(p\ \frac{sin\ \theta}{cos\ \theta} + q\ \frac{cos\ \theta}{cos\ \theta} \bigg) }

\bullet\ \; \sf \pink{tan\ \theta = \dfrac{sin\ \theta}{cos\ \theta}}

:\implies \sf \dfrac{p\ tan\ \theta - q}{p\ tan\ \theta +q}

\bullet\ \; \sf \orange{tan\ \theta =\dfrac{p}{q}}\ \; [\ \because\  Given\  ]

:\implies \sf \dfrac{ p\ \bigg(\dfrac{p}{q} \bigg) - q }{ p\ \bigg( \dfrac{p}{q} \bigg) +q }

:\implies \sf \dfrac{ \dfrac{p^2}{q}-q }{\dfrac{ p^2}{q}+q }

:\implies \sf \dfrac{\dfrac{p^2-q^2}{q}}{\dfrac{p^2+q^2}{q} }

:\implies \sf \green{\dfrac{p^2-q^2}{p^2+q^2}}\ \; \bigstar

\bullet\ \; \sf \dfrac{ p\ sin\ \theta-q\ cos\ \theta }{ p\ sin\ \theta+q\ cos\ \theta }= \dfrac{p^2-q^2}{p^2+q^2}

Similar questions