if tan teeta +sin teeta and tan teeta-sin teeta= n then show that m2-n2=4√mn
uneq95:
bro! its called back theta not teeta! :-P:-P
Answers
Answered by
6
Hi,
tanθ + sinθ = m -----------( 1 )
tanθ - sinθ = n ------------( 2 )
i ) m^2 - n^2
= ( tanθ + sinθ )^2 - ( tanθ - sinθ )^2
= 4tanθ sinθ ----( 3 )
ii ) 4 sqrt (mn)
= 4 sqrt[( tanθ + sinθ )( tanθ - sinθ )]
= 4 sqrt[ tan^2θ - sin^2θ ]
= 4 sqrt [ sin^2θ / cos^θ - sin^2 θ /1 ]
= 4 sqrt [ sin^2θ ( 1/ cos^2θ - 1/1 ) ]
= 4 sqrt [ sin^2 θ ( sec2 θ - 1) ]
=4 sqrt [ sin^2 θ tan^2θ ]
= 4 sinθ tanθ ------( 4 )
from ( 3 ) and ( 4 )
( 3 ) = ( 4 )
Therefore,
m^2 - n^2 = 4 sqrt( mn)
i hope this will useful to you.
*****
tanθ + sinθ = m -----------( 1 )
tanθ - sinθ = n ------------( 2 )
i ) m^2 - n^2
= ( tanθ + sinθ )^2 - ( tanθ - sinθ )^2
= 4tanθ sinθ ----( 3 )
ii ) 4 sqrt (mn)
= 4 sqrt[( tanθ + sinθ )( tanθ - sinθ )]
= 4 sqrt[ tan^2θ - sin^2θ ]
= 4 sqrt [ sin^2θ / cos^θ - sin^2 θ /1 ]
= 4 sqrt [ sin^2θ ( 1/ cos^2θ - 1/1 ) ]
= 4 sqrt [ sin^2 θ ( sec2 θ - 1) ]
=4 sqrt [ sin^2 θ tan^2θ ]
= 4 sinθ tanθ ------( 4 )
from ( 3 ) and ( 4 )
( 3 ) = ( 4 )
Therefore,
m^2 - n^2 = 4 sqrt( mn)
i hope this will useful to you.
*****
Answered by
8
Question:
If tanθ + sinθ = m and tanθ - sinθ =n, Show that m² - n² = 4√mn
Answer:
First simplify the LHS, i.e, m² - n².
m² - n² = (tanθ + sinθ)² - [(tanθ - sinθ)²]
= tan²θ + sin²θ + 2tanθsinθ - [tan²θ + sin²θ - 2tanθ × sinθ]
= tan²θ + sin²θ + 2tanθsinθ - tan²θ - sin²θ + 2tanθ × sinθ
⇒ tan²θ + sin²θ and - tan²θ - sin²θ get cancelled
= 2tanθsinθ + 2tanθsinθ
= 4 × tanθ × sinθ → 1
Now, we simplify the RHS i.e, 4√mn
= 4 × sinθ × tanθ → 2
From 1 and 2,
LHS = RHS,
Hence Proved!
Similar questions
Biology,
7 months ago
Math,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
Science,
1 year ago