if tan teeta+ sin teeta=m and tan teeta - sin teeta = n show that ( m² - n²)² = 16mn
Answers
Answered by
4
I hope it will help you
Take 16mn = 4√mn
tan(θ) + sin(θ) = m
tan(θ) - sin(θ) = n
m.n = [tan(θ) + sin(θ)].[tan(θ) - sin(θ)]
m.n = tan²(θ) - sin²(θ)
m.n = [sin²(θ)/cos²(θ)] - sin²(θ)
m.n = [sin²(θ) - sin²(θ).cos²(θ)]/cos²(θ)
m.n = sin²(θ).[1 - cos²(θ)]/cos²(θ) → recall: cos² + sin² = 1 → sin² = 1 - cos²
m.n = sin²(θ).[sin²(θ)]/cos²(θ)
m.n = sin²(θ).[sin²(θ)/cos²(θ)]
m.n = sin²(θ).tan²(θ)
√(m.n) = sin(θ).tan(θ) ← memorize this result as (i)
m² - n² = [tan(θ) + sin(θ)]² - [tanθ) - sin(θ)]²
m² - n² = [tan²(θ) + 2.tan(θ).sin(θ) + sin²(θ)] - [tan²(θ) - 2.tan(θ).sin(θ) + sin²(θ)]
m² - n² = tan²(θ) + 2.tan(θ).sin(θ) + sin²(θ) - tan²(θ) + 2.tan(θ).sin(θ) - sin²(θ)
m² - n² = 4.tan(θ).sin(θ) → recall (i)
m² - n² = 4.√(m.n)
Pls mark as a brainlist
Take 16mn = 4√mn
tan(θ) + sin(θ) = m
tan(θ) - sin(θ) = n
m.n = [tan(θ) + sin(θ)].[tan(θ) - sin(θ)]
m.n = tan²(θ) - sin²(θ)
m.n = [sin²(θ)/cos²(θ)] - sin²(θ)
m.n = [sin²(θ) - sin²(θ).cos²(θ)]/cos²(θ)
m.n = sin²(θ).[1 - cos²(θ)]/cos²(θ) → recall: cos² + sin² = 1 → sin² = 1 - cos²
m.n = sin²(θ).[sin²(θ)]/cos²(θ)
m.n = sin²(θ).[sin²(θ)/cos²(θ)]
m.n = sin²(θ).tan²(θ)
√(m.n) = sin(θ).tan(θ) ← memorize this result as (i)
m² - n² = [tan(θ) + sin(θ)]² - [tanθ) - sin(θ)]²
m² - n² = [tan²(θ) + 2.tan(θ).sin(θ) + sin²(θ)] - [tan²(θ) - 2.tan(θ).sin(θ) + sin²(θ)]
m² - n² = tan²(θ) + 2.tan(θ).sin(θ) + sin²(θ) - tan²(θ) + 2.tan(θ).sin(θ) - sin²(θ)
m² - n² = 4.tan(θ).sin(θ) → recall (i)
m² - n² = 4.√(m.n)
Pls mark as a brainlist
Riyakushwaha12345:
Please mark as a brainlist
Answered by
2
HEYA!!!!
YOUR SOLUTION IS IN THE ATTACHMENT.
#KEVIN
HOPE IT HELPS YOU ☺
YOUR SOLUTION IS IN THE ATTACHMENT.
#KEVIN
HOPE IT HELPS YOU ☺
Attachments:
Similar questions