If tan teta =1/root7 ,then cosec²teta -sec² teta /cosec²teta+sec²teta =?
Answers
Answered by
2
Answer:
Hope it is helpful for you
Attachments:
Answered by
7
Answer:-
Theta is taken as A.
Given:
Tan A = 1/√7
(Squaring on both sides)
→ tan² A = (1/√7)²
→ Sin² A/Cos² A = 1/7
→ Sin² A (1/Cos² A) = 1/7
→ Sin² A * Sec² A = 1/7
→ Sec² A = (1/7)/Sin² A
→ Sec² A = 1/(7*Sin² A).
→ Sec² A = 1/7(1/Sin² A)
→ Sec² A = Cosec² A/7 -- equation (1).
Let,
(Cosec² A - Sec² A)/Cosec² A + Sec² A = a
→ (Cosec² A - Cosec² A/7) = a(Cosec² A + Cosec² A/7)
→ (7Cosec² A - Cosec² A)/7 = a(7 Cosec² A + Cosec² A)/7
→ 6Cosec² A/7 = a(8 Cosec² A )/7
(Cosec² A/7 are cancelled out both sides)
→ 6 = 8a
→ a = 6/8
→ a = 3/4
Hence, the value of (Cosec² A - Sec² A)/(Cosec² A + Sec² A) is 3/4.
Similar questions