Math, asked by kvrconscy, 4 months ago

if tan teta=p/q,then find p sin teta-q cos teta by pain teta+q cos teta​

Answers

Answered by ShuchiRecites
3

Please refer the attached solution

Simply take q common and replace p/q with tan∅ while tan∅ with sin∅/cos∅.

Formulas Used:

→ cos2∅ = cos²∅ - sin²∅

Attachments:
Answered by Anonymous
38

\sf{Answer}

Step-by-step-explanation :-

Appropriate Queation:-

tanθ = \sf\dfrac{p}{q} Then find the value of

\sf\dfrac{psinθ-qcosθ}{psinθ+qcosθ}

Solution :-

tanθ = \sf\dfrac{opposite}{adjacent}

From pythagoras theoram

AC² = AB² + BC²

(Hyp)² = s² + s²

(Hyp)² = p² + q²

Hyp = √p²+q²

Now ,

sinθ = \sf\dfrac{opposite}{hypotenuse}

sinθ = \sf\dfrac{p}{√p²+q²}

cosθ = \sf\dfrac{q}{√p²+q²}

Plugging values !

\sf\dfrac{psinθ-qcosθ}{psinθ+qcosθ}

psinθ- qcosθ= \sf\dfrac{p²/√p²+q²}{-q²/√p²+q²}

psinθ- qcosθ= \sf\dfrac{p²-q²}{√p²+q²}

psinθ+qcosθ = \sf\dfrac{p²/√p²+q²}{+q²/√p²+q²}

psinθ+qcosθ = \sf\dfrac{p²+q²}{√p²+q²}

\sf\dfrac{psinθ-qcosθ}{psinθ+qcosθ} = \sf\dfrac{p²-q²}{p²+q²}

alternate method:-

tanθ = \sf\dfrac{p}{q}

tanθ = \sf\dfrac{sinθ}{cosθ}

So,

\sf\dfrac{sinθ}{cosθ} = \sf\dfrac{p}{q}

sinθ = p

cosθ = q

Substuite in question

\sf\dfrac{psinθ-qcosθ}{psinθ+qcosθ} =

\sf\dfrac{p(p)-q(q)}{p(p)+q(q)}

\sf\dfrac{p²-q²}{p²+q²}

So,

\sf\dfrac{psinθ-qcosθ}{psinθ+qcosθ} = \sf\dfrac{p²-q²}{p²+q²}

__________________________

If u cant understand clearly once refer attachments of solution..

Attachments:
Similar questions