If tan teta + sin teta =m and tan teta - sin teta = n then prove that M2-n2=4 root of mn
Answers
Answered by
4
Hiii friend,
Tan theta + Sin theta = M
Tan theta - Sin theta = N
LHS = (M)² - (N)²
=> (Tan²Theta+ Sin²theta)² - (Tan²Theta-Sin²theta)²
=> 4 Tan theta Sin theta
RHS = 4✓MN
=> 4 ✓(Tan theta+ Sin theta)(Tan theta-Sin theta)
=> 4 ✓ (Tan²Theta-Sin²theta)
=> 4 ✓ (Sin²theta/Cos²theta) - Sin²theta)
=> 4 × ✓Sin²thta - Sin²theta Cos²theta/Cos theta
=> 4 × Sin theta/Cos theta × ✓1-Cos² theta
=> 4 Tan theta × ✓Sin²theta
=> 4 Tan theta Sin theta = LHS
Hence,
LHS = RHS.....PROVED.....
Tan theta + Sin theta = M
Tan theta - Sin theta = N
LHS = (M)² - (N)²
=> (Tan²Theta+ Sin²theta)² - (Tan²Theta-Sin²theta)²
=> 4 Tan theta Sin theta
RHS = 4✓MN
=> 4 ✓(Tan theta+ Sin theta)(Tan theta-Sin theta)
=> 4 ✓ (Tan²Theta-Sin²theta)
=> 4 ✓ (Sin²theta/Cos²theta) - Sin²theta)
=> 4 × ✓Sin²thta - Sin²theta Cos²theta/Cos theta
=> 4 × Sin theta/Cos theta × ✓1-Cos² theta
=> 4 Tan theta × ✓Sin²theta
=> 4 Tan theta Sin theta = LHS
Hence,
LHS = RHS.....PROVED.....
Similar questions