Math, asked by Pronita90, 1 year ago

If tan tetha = Q sin theta/P+Q cos alpha prove that tan (alpha- theta)= P sin alpha/Q+P cos alpha

Answers

Answered by CarliReifsteck
2

Given that,

If \tan\theta=\dfrac{Q\sin\alpha}{P+Q\cos\alpha}

The given function is

\tan(\alpha-\theta)=\dfrac{P\sin\alpha}{Q+P\cos\alpha}

We need to prove the given function

Using left hand side

=\tan(\alpha-\theta)

=\dfrac{\tan\alpha-\tan\theta}{1+\tan\alpha\tan\theta}

=\dfrac{\tan\alpha-\dfrac{Q\sin\alpha}{P+Q\cos\alpha}}{1+\tan\alpha\times\dfrac{Q\sin\alpha}{P+Q\cos\alpha}}

=\dfrac{P\tan\alpha+Q\tan\alpha\cos\alpha-Q\sin\alpha}{P+Q\cos\alpha+\tan\alpha\times Q\sin\alpha}

=\dfrac{P\tan\alpha+Q\sin\alpha-Q\sin\alpha}{P+Q\cos\alpha+\dfrac{Q\sin^2\alpha}{\cos\alpha}}

=\dfrac{P\sin\alpha}{\cos\alpha(P+Q\cos\alpha+\dfrac{Q\sin^2\alpha}{\cos\alpha})}

=\dfrac{P\sin\alpha}{P\cos\alpha+Q\cos^2\alpha+Q\sin^2\alpha}

=\dfrac{P\sin\alpha}{P\cos\alpha+Q}

=R.H.S

Hence, This is proved

Similar questions