Math, asked by sara112733, 9 hours ago

if tan tetha - sin² tetha = cos²tetha then show that sin² tetha = ½​

Answers

Answered by vaishnavi613333
1

Step-by-step explanation:

Given tanθ=

13

12

cos

2

θ−sin

2

θ

2sinθcosθ

=

cos2θ

sin2θ

=tan2θ=

1−tan

2

θ

2tanθ

=

1−

169

144

13

12

=

169

25

13

24

=

25

24×13

=

25

312

Answered by 12784
0

Answer:

Given tanθ= \frac{12}{13}

\frac{2sinθcosθ}{cos^{2}θ-sin^{2}  } =\frac{sin2θ​  }{cos2θ}=tan2θ=\frac{2tanθ}{ 1−tanθ}=\frac{2× \frac{12}{13}}{1-\frac{144}{169} } =\frac{\frac{24}{13} }{\frac{25}{169} }=\frac{24*13}{25}=\frac{312}{25}

 

Similar questions