Math, asked by Oodleslt, 18 hours ago

If tan θ =  \frac{a}{x} , find the value of  \frac{x}{ \sqrt{ {a}^{2} + {x}^{2} } }

Answers

Answered by user0888
35

Given that,

\rm\tan\theta=\dfrac{a}{x}

\;

Given expression in terms of trigonometric ratio is,

\rm\dfrac{x}{\sqrt{a^{2}+x^{2}}}

\;

\rm=\dfrac{x}{\sqrt{a^{2}+x^{2}}}\times\dfrac{\dfrac{1}{a}}{\dfrac{1}{a}}

\;

\rm=\dfrac{\dfrac{x}{a}}{\sqrt{\dfrac{1}{a^{2}}(a^{2}+x^{2})}}

\;

\rm=\dfrac{\dfrac{x}{a}}{\sqrt{1+\dfrac{x^{2}}{a^{2}}}}

\;

\rm=\dfrac{\dfrac{1}{\tan\theta}}{\sqrt{1+\dfrac{1}{\tan^{2}\theta}}}

\;

\rm=\dfrac{\dfrac{1}{\tan\theta}}{\sqrt{\dfrac{\tan^{2}\theta+1}{\tan^{2}\theta}}}

\;

\boxed{\rm\tan^{2}+1=\sec^{2}\theta}

\rm=\dfrac{\dfrac{1}{\tan\theta}}{\sqrt{\dfrac{\sec^{2}\theta}{\tan^{2}\theta}}}

\;

\rm=\dfrac{\dfrac{1}{\tan\theta}}{\sqrt{\left(\dfrac{\sec\theta}{\tan\theta}\right)^{2}}}

\;\boxed{\rm\sqrt{a^{2}}=a\ (a\geq0)}

\rm=\dfrac{\dfrac{1}{\tan\theta}}{\dfrac{\sec\theta}{\tan\theta}}

\;

\rm=\dfrac{1}{\sec\theta}

\;

\rm=\cos\theta

\;

\rm\therefore\dfrac{x}{\sqrt{a^{2}+x^{2}}}=\cos\theta

\;

\Large\textrm{Learn More}

\textbf{- Trigonometic Identities}

\boxed{\rm{\sin^{2}\theta+\cos^{2}\theta=1}}

\;

\boxed{\rm{\tan^{2}\theta+1=\sec^{2}\theta}}

\;

\boxed{\rm \tan\theta=\dfrac{\sin\theta}{\cos\theta}}

\;

\textbf{- Reciprocal Ratios}

\boxed{\rm{\sin\theta\csc\theta=1}}

\;

\boxed{\rm{\cos\theta\sec\theta=1}}

\;

\boxed{\rm{\tan\theta\cot\theta=1}}

Similar questions