if tan theeta =3/4 find the value of (1-cos^2 theeta/1+cos^2 theeta)
Answers
Answered by
13
Answer:
9 / 41 .
Step-by-step explanation:
Given :
tan Ф = 3 / 4
We know :
tan Ф = P / B
Also :
H² = P² + B²
H = √ P² + B²
H = √ 16 + 9
H = √ 25
H = 5 .
Now :
1 - cos² Ф / 1 + cos² Ф
= > ( 1 - ( B / H )² ) / ( 1 + ( B / H )² )
= > ( 1 - 16 / 25 ) / ( 1 + 16 / 25 )
= > ( 9 / 25 ) / ( 41 / 25 )
= > 9 / 41 .
Therefore , the value of ( 1 - cos² Ф / 1 + cos² Ф ) is 9 / 41 .
Answered by
3
Step-by-step explanation:
1.first apply the formula
1 + tan2theeta = sec2theeta
2. then you'll get sectheeta
3. then ull also get costheeta
4. put the values in the given question
Attachments:
Similar questions