Math, asked by sadhanadixit746, 4 months ago

а
If tan =
then find
cos + sine
cos - sino
b ь​

Answers

Answered by oomkarbhosle
0

Answer:

  1. vhepsskdddii
  2. iivieeeoo2doiww
  3. ohqqqgqqqqooqd
  4. ooxdddnwjnpew
  5. hjju
Answered by Shahzeb786
0

Answer:

The result of \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta }

cosθ−sinθ

cosθ+sinθ

is found out to be \frac { \mathrm { a } + \mathrm { b } } { \mathrm { b } - \mathrm { a } }

b−a

a+b

To find:

The result of \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta }

cosθ−sinθ

cosθ+sinθ

when \tan \theta = \frac { \mathrm { a } } { \mathrm { b } }tanθ=

b

a

Solution:

Given that the value of \tan \theta = \frac { \mathrm { a } } { \mathrm { b } }tanθ=

b

a

The value of \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta }

cosθ−sinθ

cosθ+sinθ

is determined by dividing the numerator and denominator by \cos \thetacosθ

\begin{gathered}\begin{array} { c } { \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } = \frac { \frac { \cos \theta } { \cos \theta } + \frac { \sin \theta } { \cos \theta } } { \frac { \cos \theta } { \cos \theta } - \frac { \sin \theta } { \cos \theta } } } \\\\ { = \frac { 1 + \tan \theta } { 1 - \tan \theta } } \end{array}\end{gathered}

cosθ−sinθ

cosθ+sinθ

=

cosθ

cosθ

cosθ

sinθ

cosθ

cosθ

+

cosθ

sinθ

=

1−tanθ

1+tanθ

We know that \tan \theta = \frac { \mathrm { a } } { \mathrm { b } }tanθ=

b

a

, as per the given question,

\begin{gathered}\begin{aligned} & = \frac { 1 + \frac { \mathrm { a } } { \mathrm { b } } } { 1 - \frac { \mathrm { a } } { \mathrm { a } } } \\\\ & = \frac { \frac { \mathrm { b } + \mathrm { a } } { \mathrm { b } } } { \frac { \mathrm { b } - \mathrm { a } } { \mathrm { b } } } \\\\ = & \frac { \mathrm { b } + \mathrm { a } } { \mathrm { b } - \mathrm { a } } \\ \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } & = \frac { \mathrm { a } + \mathrm { b } } { \mathrm { b } - \mathrm { a } } \end{aligned}\end{gathered}

=

cosθ−sinθ

cosθ+sinθ

=

1−

a

a

1+

b

a

=

b

b−a

b

b+a

b−a

b+a

=

b−a

a+b

Similar questions