Math, asked by harshit181872apskhal, 10 months ago

If tan theta = 1/2 then evaluate (cos theta)/(sin theta)+(sin theta)/(1+cos theta) is ?




Plz answer fast

Answers

Answered by rohithreddy2001
55

Answer:

Kindly Refer attachment

Hope it helps

please mark it as brainliest

Attachments:
Answered by BrainlyPopularman
39

GIVEN :–

 \\ \bf \: { \huge{.}} \:\: \tan( \theta) = \dfrac{1}{2} \\

TO FIND :–

 \\ \bf \: { \huge{.}} \:\: \dfrac{ \cos( \theta) }{ \sin( \theta) } + \dfrac{ \sin( \theta) }{1 + \cos( \theta) } = ? \\

SOLUTION :–

 \\ \bf \implies \tan( \theta) = \dfrac{1}{2} \\

• We know that –

 \\ \bf \implies { \sec}^{2}\theta =1 + \tan^{2} ( \theta) \\

 \\ \bf \implies { \sec}^{2}\theta =1 + \left( \dfrac{1}{2} \right)^{2} \\

 \\ \bf \implies { \sec}^{2}\theta = \left( \dfrac{5}{4} \right) \\

 \\ \bf \implies { \sec}\theta = \dfrac{ \sqrt5}{2} \\

• Now –

 \\ \bf \:\:=\:\: \dfrac{ \cos( \theta) }{ \sin( \theta) } + \dfrac{ \sin( \theta) }{1 + \cos( \theta) } \\

• We should write this as –

 \\ \bf \:\:=\:\: \dfrac{1}{ \dfrac{\sin( \theta)}{ \cos( \theta) }} + \dfrac{ \dfrac{ \sin( \theta)}{ \cos( \theta) } }{ \dfrac{1 + \cos( \theta)}{ \cos( \theta) } } \\

 \\ \bf \:\:=\:\: \dfrac{1}{\tan( \theta)} + \dfrac{ \tan( \theta) }{ \sec( \theta) + 1 } \\

• Put the values —

 \\ \bf \:\:=\:\: \dfrac{1}{ \dfrac{1}{2} } + \dfrac{ \dfrac{1}{2} }{ \dfrac{ \sqrt{5} }{2} + 1 } \\

 \\ \bf \:\:=\:\: 2+ \dfrac{ \dfrac{1}{2} }{ \dfrac{ \sqrt{5} + 2}{2} } \\

 \\ \bf \:\:=\:\: 2+ \dfrac{1}{ \sqrt{5} + 2} \\

 \\ \bf \:\:=\:\: \dfrac{2( \sqrt{5} + 2) + 1}{ \sqrt{5} + 2} \\

 \\ \bf \:\:=\:\: \dfrac{2\sqrt{5} + 4+ 1}{ \sqrt{5} + 2} \\

 \\ \bf \:\:=\:\: \dfrac{2\sqrt{5} +5}{ \sqrt{5} + 2} \\

 \\ \bf \:\:=\:\: \dfrac{\sqrt{5} (2+\sqrt{5})}{ \sqrt{5} + 2} \\

 \\ \bf \:\:=\:\: \sqrt{5} \\

 \\ \rule{220}{2} \\

Similar questions