Math, asked by mysafetripchrompet, 9 hours ago

if tan theta +1=√2 then prove that costheta-sintheta=√2 sintheta​

Answers

Answered by sanitat933
1

Answer:

nachi nachi gen to a nachi gen u u nachi nachi gen to a nachi gen to parchi into gen to a nachi gen to

Answered by vikkiain
1

very \:  \:  easy,  \:  \: bro \\ use  \boxed{(a - b)^{2} + (a + b)^{2}  = 2(a^{2}  + b^{2} )}

Step-by-step explanation:

Given, \:  \:  \:  \: tan \theta + 1 =  \sqrt{2}  \\ Now, \:  \:  \:  \frac{sin \theta}{cos \theta}  + 1 =  \sqrt{2}  \\  \frac{sin \theta + cos \theta}{cos \theta}  =  \sqrt{2}  \\ sin \theta + cos \theta =  \sqrt{2} cos \theta \\ we \:  \: know \:  \: that \:  \:   \:  \: \boxed{(a - b)^{2}   +  (a + b)^{2}  = 2( {a}^{2} +  {b}^{2}  )} \\ putting \:  \:  \: a = cos \theta \:  \: and \:  \: b = sin \theta \\ (cos \theta  - sin \theta)^{2} +  (cos \theta + sin \theta)^{2}   =  2(cos^{2}  \theta + sin^{2}  \theta )\\(cos \theta  - sin \theta)^{2} +  ( \sqrt{2}cos \theta )^{2}   = 2 \times 1 = 2 \\ (cos \theta  - sin \theta)^{2} +   2cos^{2}  \theta   =2 \\ (cos \theta  - sin \theta)^{2} = 2 - 2cos^{2}  \theta \\(cos \theta  - sin \theta)^{2}  = 2(1 - cos^{2} \theta )  \\(cos \theta  - sin \theta)^{2} = 2sin^{2}  \theta \\ cos \theta  - sin \theta =  \sqrt{2} sin \theta

Similar questions