Math, asked by kuldeepk94827, 8 months ago

if tan theta =1/5, find the value of cos theta-sin theta/ cos theta+sin theta​

Answers

Answered by vallaribhoyar
0

Answer -

2/3

Explanation-

tanФ = 1/5

tanФ = sinФ/cosФ

sinФ = 1 and cosФ=5

cosФ-sinФ/ cosФ+sinФ​ = 5-1 / 5+1

                                       = 4/6

                                       = 2/3

                                                           OR

tanФ = 1/5

tanФ = opposite/adjacent

opposite side = 1 = AB

adjacent side = 5 = BC

By Pythagoras theorem , AC = \sqrt{26}

cosФ = 5/\sqrt{26}

sinФ = 1/\sqrt{26}

cosФ-sinФ/ cosФ+sinФ​ =( 5/\sqrt{26}  - 1/\sqrt{26} ) / (5/\sqrt{26} +1/\sqrt{26} )

                                       = (5-1/\sqrt{26} ) / (5+1/\sqrt{26} )                                      

                                        = \frac{4}{\sqrt{26} } *\frac{\sqrt{26} }{6}

                                        = 4/6

                                        = 2/3

Hope this helps u.

Attachments:
Similar questions