Math, asked by smita4567, 7 months ago

if tan theta=1÷✓5 what is the value of
cosec square theta-secsquaretheta÷cosec square theta+sec square theta​

Answers

Answered by varadad25
58

Question:

If \sf\:\tan\:\theta\:=\:\dfrac{1}{\sqrt{5}}, find the value of

\displaystyle\sf\:\dfrac{\csc^2\:\theta\:-\:\sec^2\:\theta}{\csc^2\:\theta\:+\:\sec^2\:\theta}

Answer:

\displaystyle\boxed{\red{\sf\:\dfrac{\csc^2\:\theta\:-\:\sec^2\:\theta}{\csc^2\:\theta\:+\:\sec^2\:\theta}\:=\:\dfrac{2}{3}}}

Step-by-step-explanation:

We have given that,

\sf\:\tan\:\theta\:=\:\dfrac{1}{\sqrt{5}}

We know that,

\displaystyle\pink{\sf\:\cot\:\theta\:=\:\dfrac{1}{\tan\:\theta}}\sf\:\:\:-\:-\:[\:Trigonometric\:identity\:]

\displaystyle\implies\sf\:\cot\:\theta\:=\:\dfrac{1}{\dfrac{1}{\sqrt{5}}}

\displaystyle\implies\sf\:\cot\:\theta\:=\:\dfrac{1}{1}\:\times\:\dfrac{\sqrt{5}}{1}

\displaystyle\implies\sf\:\cot\:\theta\:=\:\dfrac{\sqrt{5}}{1}

\displaystyle\implies\boxed{\red{\sf\:\cot\:\theta\:=\:\sqrt{5}}}

Now, we know that,

\displaystyle\pink{\sf\:\csc^2\:\theta\:=\:1\:+\:\cot^2\:\theta}\sf\:\:\:-\:-\:[\:Trigonometric\:identity\:]

\displaystyle\implies\sf\:\csc^2\:\theta\:=\:1\:+\:(\:\sqrt{5}\:)^2

\displaystyle\implies\sf\:\csc^2\:\theta\:=\:1\:+\:5

\displaystyle\implies\boxed{\red{\sf\:\csc^2\:\theta\:=\:6}}

Now, we know that,

\displaystyle\pink{\sf\:\sec^2\:\theta\:=\:1\:+\:\tan^2\:\theta}\sf\:\:\:-\:-\:-\:[\:Trigonometric\:identity\:]

\displaystyle\implies\sf\:\sec^2\:\theta\:=\:1\:+\:\left(\:\dfrac{1}{\sqrt{5}}\:\right)^2

\displaystyle{\implies\sf\:\sec^2\:\theta\:=\:1\:+\:\left(\:\dfrac{\:(\:1\:)^2}{\;(\:\sqrt{5}\:)^2}\:\right)\:\:\:-\:-\:[\:\because\:\left(\:\dfrac{a}{b}\:\right)^2\:=\:\dfrac{a^2}{b^2}\:]}

\displaystyle\implies\sf\:\sec^2\:\theta\:=\:1\:+\:\dfrac{1}{5}

\displaystyle\implies\sf\:\sec^2\:\theta\:=\:\dfrac{1\:\times\:5\:+\:1}{5}

\displaystyle\implies\sf\:\sec^2\:\theta\:=\:\dfrac{5\:+\:1}{5}

\displaystyle\implies\boxed{\red{\sf\:\sec^2\:\theta\:=\:\dfrac{6}{5}}}

Now,

\displaystyle\sf\:\dfrac{\csc^2\:\theta\:-\:\sec^2\:\theta}{\csc^2\:\theta\:+\:\sec^2\:\theta}

\displaystyle\implies\sf\:\dfrac{6\:-\:\dfrac{6}{5}}{6\:+\:\dfrac{6}{5}}

\displaystyle\implies\sf\:\dfrac{\dfrac{6\:\times\:5\:-\:6}{5}}{\dfrac{6\:\times\:5\:+\:6}{5}}

\displaystyle\implies\sf\:\dfrac{\dfrac{30\:-\:6}{5}}{\dfrac{30\:+\:6}{5}}

\displaystyle\implies\sf\:\dfrac{\dfrac{24}{5}}{\dfrac{36}{5}}

\displaystyle\implies\sf\:\dfrac{24}{\cancel{5}}\:\times\:\dfrac{\cancel{5}}{36}

\displaystyle\implies\sf\:\cancel{\dfrac{24}{36}}

\displaystyle\therefore\boxed{\red{\sf\:\dfrac{\csc^2\:\theta\:-\:\sec^2\:\theta}{\csc^2\:\theta\:+\:\sec^2\:\theta}\:=\:\dfrac{2}{3}}}


amitkumar44481: Perfect :-)
BrainIyMSDhoni: Superb :)
varadad25: Thank you! :)
Answered by Anonymous
377

Step-by-step explanation:

Given : -

  • tan theta=1÷✓5

To find : -

  • The value of (cosec²θ - sec²θ)/(cosec²θ + sec²θ)

solution : -

  • here tanθ = 1/√5 = p/b

  • so, p = 1 and b = √5

Pythagoras theorem, h = √(1² + √5²) = √6

now cosecθ = h/p = √6/1 = √6

secθ = h/b = √6/√5

now (cosec²θ - sec²θ)/(cosec²θ + sec²θ)

= {(√6)² - (√6/√5)²}/{(√6)² + (√6/√5)²}

= (6 - 6/5)/(6 + 6/5)

= (30 - 6)/(30 + 6)

= 24/36

= 2/3

Therefore the value of (cosec²θ - sec²θ)/(cosec²θ + sec²θ) is 2/3


BrainIyMSDhoni: Great :)
Similar questions