Math, asked by scs248720, 6 months ago

if tan theta = 1 by root 3 what is the value of cos theta​

Answers

Answered by amansharma264
3

EXPLANATION.

→ Tan ø = 1/√3

To find value of cos ø.

→ Tan ø = P/B = perpendicular/Base.

→ By using the Pythagorean theorem.

→ H² = p² + B²

→ H² = (1)² + (√3)²

→ H² = 1 + 3

→ H² = 4

→ H = 2

→ Sin ø = P/H = 1/2

→ Cos ø = B/H = √3/2

→ Tan ø = P/B = 1/√3

→ Cosec ø = H/P = 2/1

→ Sec ø = H/B = 2/√3

→ Cot ø = B/P = √3/1

Answered by Anonymous
32

Given :

  • Tan ø = 1/√3

To Find :

  • what is the value of cos theta

Solution :

By Pythagorean theorem :

Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides“.

  • The sides of this triangle have been named as Perpendicular, Base and Hypotenuse.

  • Here, the hypotenuse is the longest side, as it is opposite to the angle 90°.

 :  \implies  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {H}^{2}   =  {P}^{2} +    {B}^{2}

Substitute all values :

 :  \implies  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {H}^{2}   =  {1}^{2} +    {( \cancel{ \sqrt{} \:  3} } \: )^{ \cancel{2} } \\  \\  \\  \\ :  \implies  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {H}^{2}   = 1 + 3 \\  \\  \\ :  \implies  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {H}^{2}   = 4 \\  \\  \\ :  \implies  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  H  =  \sqrt{4}  \\  \\  \\  \\ \implies  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  H  = 2

More to know :

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

Similar questions