Math, asked by ifffat45678, 1 month ago

if tan theta=1/root 7 show that 4/3​

Answers

Answered by jagdishsingh1953jg
0

Answer:

The value will be \frac { 3 }{ 4 }

4

3

Given:

\tan \theta=\frac{1}{\sqrt({7} )}tanθ=

(

7)

1

To find:

The value of \frac{\csc^{2} \theta-\sec ^{2} \theta}{\csc ^{2} \theta+\sec ^{2} \theta}

csc

2

θ+sec

2

θ

csc

2

θ−sec

2

θ

Solution:

\tan \theta = \frac {\text (opposite side)}{\text (adjacent side)}tanθ=

(adjacentside)

(oppositeside)

\tan \theta =\frac{1}{\sqrt({7} )}tanθ=

(

7)

1

Therefore,

Opposite side = 1 and Adjacent side = \sqrt({7})=

(

7)

By Pythogoras theorem

Hypotenuse ^2 = Adjacent^2+Opposite^2Hypotenuse

2

=Adjacent

2

+Opposite

2

Hypotenuse^2=({\sqrt7})^2 + 1^2Hypotenuse

2

=(

7

)

2

+1

2

Hypotenuse^2 = 7 + 1Hypotenuse

2

=7+1

Hypotenuse = \sqrt 8Hypotenuse=

8

\Sin \theta = \frac {\text(Opposite)}{\text(Hypotenuse)}\Sinθ=

(Hypotenuse)

(Opposite)

Therefore,

\sin \theta=\frac{1}{\sqrt{8}}sinθ=

8

1

\csc \theta=\frac{\sqrt{8}}{1}cscθ=

1

8

\cos \theta = \frac {\text (Adjacent)}{\text(Hypotenuse)}cosθ=

(Hypotenuse)

(Adjacent)

\cos \theta=\frac{\sqrt{7}}{\sqrt{8}}cosθ=

8

7

Therefore,

\sec \theta=\frac{\sqrt{8}}{\sqrt{7}}secθ=

7

8

Now,

\frac{\csc ^{2} \theta-\sec ^{2} \theta}{\csc ^{2} \theta+\sec ^{2} \theta}=

csc

2

θ+sec

2

θ

csc

2

θ−sec

2

θ

=

\frac {\frac{\sqrt{8}^2}{1^2}-\frac{\sqrt{8}^{2}}{\sqrt{7}^{2}}} {\frac{\sqrt{8}^{2}}{1^2}+\frac{\sqrt{8}^{2}}{\sqrt{7}^{2}}}

1

2

8

2

+

7

2

8

2

1

2

8

2

7

2

8

2

\frac{8-\frac{8}{7}}{8+\frac{8}{7}}

8+

7

8

8−

7

8

\frac{\frac{56-8}{7}}{\frac{56+8}{7}}

7

56+8

7

56−8

\frac{48}{7} \times \frac{7}{64}

7

48

×

64

7

\frac {48}{64}

64

48

\frac { 3 }{ 4 }

4

3

"

Similar questions