Math, asked by Euphoriabts, 1 year ago

If tan theta + 1/tan theta = 2, find the value of tan square theta + 1/tan square theta

Answers

Answered by abhi569
372
tan∅ + 1/tan∅ = 2

Square on both sides,

(tan∅ + 1/tan∅)² = 2²

tan²∅ + 1/tan²∅ +2(tan∅×1/tan∅) = 4

tan²∅ + 1/tan²∅ + 2 = 4

tan²∅ + 1/tan²∅ = 4 - 2

tan²∅ +1/tan²∅ = 2

I hope this will help you

(-:
Answered by Panzer786
119
Heya !!!!



Given that Tan ¢ + 1/ Tan ¢ = 2



On squaring both sides we get,




( Tan ¢ + 1/Tan ¢ )² = (2)²


We know that,



( A + B)² = ( A)² + ( B)² + 2 × A × B



( Tan² ¢ ) + ( 1/Tan² ¢ ) + 2 × Tan ¢ × 1/Tan ¢ = 4









( Tan² ¢ ) + ( 1/Tan² ¢ ) + 2 = 4



( Tan² ¢ ) + ( 1/Tan² ¢ ) = 4-2



( Tan² ¢ ) + ( 1/Tan² ¢ ) = 2.





HOPE IT WILL HELP YOU..... :-)
Similar questions