If tan theta + 1/tan theta = 2, find the value of tan square theta + 1/tan square theta
Answers
Answered by
372
tan∅ + 1/tan∅ = 2
Square on both sides,
(tan∅ + 1/tan∅)² = 2²
tan²∅ + 1/tan²∅ +2(tan∅×1/tan∅) = 4
tan²∅ + 1/tan²∅ + 2 = 4
tan²∅ + 1/tan²∅ = 4 - 2
tan²∅ +1/tan²∅ = 2
I hope this will help you
(-:
Square on both sides,
(tan∅ + 1/tan∅)² = 2²
tan²∅ + 1/tan²∅ +2(tan∅×1/tan∅) = 4
tan²∅ + 1/tan²∅ + 2 = 4
tan²∅ + 1/tan²∅ = 4 - 2
tan²∅ +1/tan²∅ = 2
I hope this will help you
(-:
Answered by
119
Heya !!!!
Given that Tan ¢ + 1/ Tan ¢ = 2
On squaring both sides we get,
( Tan ¢ + 1/Tan ¢ )² = (2)²
We know that,
( A + B)² = ( A)² + ( B)² + 2 × A × B
( Tan² ¢ ) + ( 1/Tan² ¢ ) + 2 × Tan ¢ × 1/Tan ¢ = 4
( Tan² ¢ ) + ( 1/Tan² ¢ ) + 2 = 4
( Tan² ¢ ) + ( 1/Tan² ¢ ) = 4-2
( Tan² ¢ ) + ( 1/Tan² ¢ ) = 2.
HOPE IT WILL HELP YOU..... :-)
Given that Tan ¢ + 1/ Tan ¢ = 2
On squaring both sides we get,
( Tan ¢ + 1/Tan ¢ )² = (2)²
We know that,
( A + B)² = ( A)² + ( B)² + 2 × A × B
( Tan² ¢ ) + ( 1/Tan² ¢ ) + 2 × Tan ¢ × 1/Tan ¢ = 4
( Tan² ¢ ) + ( 1/Tan² ¢ ) + 2 = 4
( Tan² ¢ ) + ( 1/Tan² ¢ ) = 4-2
( Tan² ¢ ) + ( 1/Tan² ¢ ) = 2.
HOPE IT WILL HELP YOU..... :-)
Similar questions