Math, asked by sunnykhatri, 1 year ago

if tan theta +1/tan theta =2 ;show that :tan²theta+1/ten² theta=2​

Attachments:

Answers

Answered by welcome101
3

Answer:

 \tan( \alpha )  +  \frac{1}{ \tan( \alpha ) }  = 2 \\ ( \tan( \alpha )  +  \frac{1}{ \tan( \alpha ) } ) {}^{2}  =  \tan {}^{2} ( \alpha )  +  \frac{1}{ \tan {}^{2} ( \alpha ) }   + 2 \\ 2 ^{2}  = tan {}^{2} ( \alpha )  +  \frac{1}{ \tan {}^{2} ( \alpha ) }  + 2 \\ tan {}^{2} ( \alpha )  +  \frac{1}{ \tan {}^{2} ( \alpha ) }  = 2 {}^{2}  - 2 = 4 - 2 = 2 \\ ie \:  \:  \:  \: tan {}^{2} ( \alpha )  +  \frac{1}{ \tan {}^{2} ( \alpha ) }  = 2

Answered by Anonymous
4

Step-by-step explanation:

Given that,

 \sf{tan \: x +  \frac{1}{tan \: x} = 2 ............(1)} \\  \\

To prove:

 \sf{tan {}^{2}x  +  \frac{1}{tan {}^{2} x} = 2 } \\  \\

Squaring (1) on both sides,

 \sf{(tan \: x +  \:  \frac{1}{tan \: x} ) {}^{2}  = 2 {}^{2} } \\  \\  \implies \:  \sf{tan {}^{2}x + 2tan \: x. \frac{1}{tan \: x}   +  \frac{1}{ tan {}^{2}x }  = 4} \\  \\  \implies \:  \sf{tan {}^{2}x +  \frac{1}{tan {}^{2}x } = 4 - 2  } \\  \\  \implies \:   \boxed{ \boxed{ \sf{tan {}^{2}x +  \frac{1}{tan {}^{2}x} = 2  }}}

Hence,proved

•Some basic trigonometric identities:

sin²x + cos²x=1

cosec²x-cot²x=1

sec²x-tan²x=1

•Trigonometric relations:

sin x=1/cosec x

cos x=1/sec x

tan x=1/cot x

Note,I have used x instead of theta

Similar questions