Math, asked by vijaysharma57898, 3 days ago

if tan theta =1 then find the value of (sec theta +cosec theta) square pls help​

Answers

Answered by rabiya44889900
0

Answer:

this is the answer of that question.

Attachments:
Answered by chandan454380
0

Answer:

the answer is 16

Step-by-step explanation:

 \tan(theta)  = 1 \\</p><p>then  \: we \:  need \:  to \:  find \:  the \:  value \:  of </p><p> \\  ( {\sec(theta)  +  \cosec(theta) )}^{2} </p><p>

Now squaring both sides we get,

tan \: theta = 1 \\  {tan}^{2} theta = 1 \\  \frac{1}{ { \tan}^{2}theta } =  \cot^{2} theta  = 1

we know that

 \sec(theta)  = \sqrt{1 +  \tan^{2} theta }

 \cosec(theta)  = \sqrt{1 + \cot^{2} theta}

putting on the values we get,

  ( {\sec(theta)  +  \cosec(theta) )}^{2} </p><p> =  \sec^{2} theta \:  +  \cosec ^{2} theta + 2\sec theta  \cosec theta \\  = (1 +  \tan^{2} theta) + (1 +  \cot^{2} theta) + 2 \sec(theta) \cosec theta  \\  = 1 + 1 + 1 + 1 + 2 \sqrt{1 +  \tan^{2} theta }  \sqrt{1 + \cot^{2} theta}  \\  = 4 + 2 \sqrt{2} \sqrt{2}   \\ =  4 + 2  \times 2 \\  = 4 + 4 = 16

Similar questions