Math, asked by gurupadhaike, 11 months ago

If tan theta=12/13 find the value of 2sin theta *cos theta /cos^2 - sin^2 theta​

Answers

Answered by loyalnikku3011970
4

Answer:

 \tan( \alpha )  =  \frac{12}{13}  =  \frac{p}{b}  \\ h =  \sqrt{ {p}^{2}  +  {b}^{2} } \\  =  \sqrt{144 + 169}   \\  =  \sqrt{313}  \\  to \: find \:  \:  \: 2 \sin( \alpha )  \times  \cos( \alpha )  \: and \:  {cos}^{2}  \alpha  -  {sin}^{2}  \alpha  \\ 2 \sin( \alpha )  \cos( \alpha )  \\  = 2 \times  \frac{12}{ \sqrt{313} }  \times  \frac{13}{ \sqrt{313} }  \\  =  \frac{312}{313}  \\ and \\  {cos}^{2}  \alpha  -  {sin}^{2}  \alpha  \\  =  \frac{144}{313}  -  \frac{169}{313}  \\  =  \frac{ - 25}{313}

I hope it will help you

Answered by habishajahan93
5

Answer:

Tan theta=sin theta/cos theta

Sin theta =12

Cos theta =13

So,

=2*12*13/13*13-12*12

=312/25

Similar questions