Math, asked by bh00mika, 5 months ago

If tan theta
=12/5
then find the value of 1+cos theta/ 1-cos theta

Answers

Answered by xInvincible
10

\huge\fcolorbox{red}{cyan}{25}

Step-by-step explanation:

  • Tan Theta = 12/5

 \tan( \theta)  =  \frac{perpendicular}{base}

Therefore :-

  • Perpendicular = 12

  • Base = 5

Now Lets Caculate The Hypotenuse :-

By Pythagorus Theoram :-

h \:  =  \sqrt{p {}^{2}  +  {b}^{2} }  \\  =  > h =  \sqrt{1 {2}^{2} +  {5}^{2}  }  \\  =  > h =  \sqrt{144 + 25}  \\  =  > h =  \sqrt{169}  \\  =  > h = 13

Thus Hypotenuse is 13

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now :-

 \cos( \theta)  =  \frac{base}{hypotenuse} \\  =  >  \frac{5}{13}

Now As per question :-

 \frac{1 +  \cos( \theta) }{1 - cos( \theta)}  \\   =  >  \frac{1 +  \frac{base}{hypotenuse} }{1 -  \frac{base}{hypotenuse} }  \\   =  > \bf{lets \: put \: the \: values} \\  =  >  \frac{1 +  \frac{5}{13} }{1 -  \frac{5}{13} }  \\  \\  =  >  \frac{ \frac{13 + 5}{13} }{ \frac{13 - 5}{13} }  \\  \\  =  >  \frac{ \frac{18}{13} }{ \frac{8}{13} }  \\   \\  =  >  \frac{18}{8}  \\  =  >  \boxed{\frac{9}{4}}

Hope it helped

Answered by sargamyt
2

Answer:

25

Step-by-step explanation:

is the correct answer of this question

Similar questions