if (tan theta + 2)(2 tan theta + 1) = A tan theta + B sec² theta, then AB
Answers
Answered by
7
Step-by-step explanation:
Given:-
(tan theta +2)(2 tan theta + 1) = A tan theta + B sec^2 theta
To find:-
Find the value of AB?
Solution:-
Given that:
(tan θ+ 2)(2 tan θ+ 1) = A tan θ+ B sec^2 θ
LHS:-
=>Tan θ (2 Tan θ+1) +2( 2 Tan θ+1)
=>2 Tan^2 θ+ Tan θ +4 Tan θ +2
=>2 Tan^2 θ + 5 Tan θ +2
We know that
Sec^2 θ - Tan^2 θ = 1
=>Tan^2 θ = Sec^2 θ - 1
=> 2(Sec^2 θ - 1) +5 Tan θ +2
=> 2 Sec^2 θ -2 + 5 Tan θ +2
=> 2 Sec^2 θ+ 5 Tan θ +(2-2)
=> 2 Sec^2 θ+ 5 Tan θ +0
=>2 Sec^2 θ+ 5 Tan θ
Now
2 Sec^2 θ+ 5 Tan θ = A tan θ+ B sec^2 θ
=>5 Tan θ+2Sec^2 θ =A tan θ+B sec^2 θ
On Comparing both sides then
A = 5 and B = 2
Now,
the value of AB
=>AB = 5×2
AB=10
Answer:-
The value of AB for the given problem is 10
Used formula:-
- Sec^2 θ - Tan^2 θ = 1
Similar questions