Math, asked by arkajyotikundu2020, 7 months ago

If tan (theta/2) = tan (fi/2) and tan fi = 2 tan alpha
then
prove that theta + fi = 2 alpha​

Answers

Answered by Anonymous
2

Answer:

Let us put tanθ=t

1

,tanϕ=t

2

∴t

1

2

t

2

2

=(

a+b

a−b

)

or (a+b)t

1

2

t

2

2

=a−b ....(1)

Also cos2θ=

1+tan

2

θ

1−tan

2

θ

=

1+t

1

2

1−t

1

2

etc.

Now a - b cos 2θ=a−b

(1+t

1

2

)

(1−t

1

2

)

=

(1+t

1

2

)

(a−b)+(a+b)t

1

2

Put for (a - b) from (1),

=

(1+t

1

2

)

a+b

[t

1

2

t

2

2

+t

1

2

]=

(1+t

1

2

)

(a+b)t

1

2

(1+t

2

2

)

,

Similarly, a - b cos 2ϕ=

1+t

2

2

(a+b)

t

2

2

(1+t

1

2

)

∴ (a - b cos 2θ) (a - b cos 2ϕ) = (a+b)

2

t

1

2

t

2

2

=(a+b)

2

{(a−b)/(a+b)}=a

2

−b

2

,

which is independent of θ.

Similar questions