Math, asked by parth2141, 9 months ago

if tan theta =2 then find all other trigonometric ratios​

Answers

Answered by vinitharajnair
3

Answer:

Here tan theta=2/1

so hypotenuse =√(2)^2 + (1)^2 = √5.

sin theta = opposite side /hypotenuse = 2/√5. cosec theta = 1/sin theta = √5/2

Cos theta = adjacent side / hypotenuse = 1/√5. sec theta =1/cos theta = √5/1 =√5

tan theta = opposite side/ adjacent side =2/1. cot theta =1/tan theta = 1/2

HOPE IT HELPS U

HAVE A GREAT DAY

Attachments:
Answered by Anonymous
109

\huge\frak{\underline{\underline{\pink{\:QUESTION}}}}

if tan theta =2 then find all other trigonometric ratios .

\huge\frak{\underline{\underline{\pink{\:ANSWER}}}}

\large{\sf{\underline{\:GIVEN}}}

\mapsto\red{\sf{\:\tan \theta\:=\:2}}

\large{\sf{\underline{\:FIND}}}

\mapsto\red{\sf{\:All\:Trigonometric\:ratio}}

\huge\frak{\underline{\underline{\pink{\:Explanation}}}}

We Have,

A/C to Picture.

\underline{\green{\sf{\:(In\:\triangle\:ABC)}}}

\:\:\:\:\small{\pink{\sf{\:(By\:Pythagoras\:theorem)}}}

\:\:\:\:\large\green{\sf{\:(AC)^2\:=\:(AB)^2+(BC)^2}}

\mapsto\sf{\:(AC)^2\:=\:(2)^2+(1)^2}

\mapsto\sf{\:(AC)^2\:=\:4+1}

\mapsto\sf{\:(AC)\:=\sqrt{5}}

______________________

Now, Calculate

\large\boxed{\boxed{\green{\sf{\:\left(\sin \theta\:=\dfrac{(Perpendicular)}{(Hypotenuse)}\right)}}}}

\mapsto\large\pink{\sf{\:\left(\sin \theta\:=\dfrac{2}{\sqrt{5}}\right)}}

\large\boxed{\boxed{\green{\sf{\:\left(\cos \theta\:=\dfrac{(Base)}{(Hypotenuse)}\right)}}}}

\mapsto\large\pink{\sf{\:\left(\cos \theta\:=\dfrac{1}{\sqrt{5}}\right)}}

\large\boxed{\boxed{\green{\sf{\:\left)\cot \theta\:=\dfrac{(Base)}{(Perpendicular )}\right)}}}}

\mapsto\large\pink{\sf{\:\left(\cot \theta\:=\dfrac{1}{2}\right)}}

\large\boxed{\boxed{\green{\sf{\:\left(\sec \theta\:=\dfrac{(Hypotenuse)}{(Base)}\right)}}}}

\mapsto\large\pink{\sf{\:\left(\sec \theta\:=\dfrac{\sqrt{5}}{1}\right)}}

\large\boxed{\boxed{\green{\sf{\:\left(\cosec \theta\:=\dfrac{(Hypotenuse)}{(Perpendicular)}\right)}}}}

\mapsto\large\pink{\sf{\:\left((\cosec \theta\:=\dfrac{\sqrt{5}}{2}\right)}}

______________________

Attachments:
Similar questions