if tan theta = 20/21 then find value of other trigonomertic ratio
Answers
1+sinθ+cosθ1−sinθ+cosθ is 73 .
To find:
Evaluate \frac{1-\sin \theta+\cos \theta}{1+\sin \theta+\cos \theta}1+sinθ+cosθ1−sinθ+cosθ
Solution:
Given: \tan \theta=\frac{20}{21}tanθ=2120
The hypotenuse will be 29 by Pythagoras theorem.
Then \sin \theta=\frac{20}{29}\ \&\ \cos \theta=\frac{21}{29}sinθ=2920 & cosθ=2921
\frac{1-\sin \theta+\cos \theta}{1+\sin \theta+\cos \theta}1+sinθ+cosθ1−sinθ+cosθ
Replacing the values with above, we have
\frac{\left[1-\left(\frac{20}{29}\right)+\left(\frac{21}{29}\right)\right]}{\left[1+\left(\frac{20}{29}\right)+\left(\frac{21}{29}\right)\right]}[1+(2920)+(2921)][1−(2920)+(2921)]
=\frac{\left[29-\frac{20}{29}+\frac{21}{29}\right]}{\left[29+\frac{20}{29}+\frac{21}{29}\right]}=[29+2920+2921][29−2920+2921]
=\frac{29-20+21}{29+20+21}=29+20+2129−20+21
=\frac{30}{70}=7030
=\frac{3}{7}=73
“Sine, cosine and tangent” are main functions in trigonometry. We are mainly derived this functions using formulas. ‘Trigonometric functions’ have been ‘extended as functions’ of a “real or complex variable”, which are today ‘pervasive in all mathematics’.
For more information visit Brainly website (brainly.in)
______________________________________
I hope my answer helps you....✌
This is the answer of the question