Math, asked by naveenchandra3635, 1 month ago

If tan theta = 3/4, evaluate 1/sin theta+1/cos theta​

Answers

Answered by Tan201
1

Answer:

\frac{7}{12}

Step-by-step explanation:

Given:

tan\theta=\frac{3}{4}

To find:

\frac{1}{sin\theta}+\frac{1}{cos\theta}

Solution:

Let us name the triangle ABC

tan\theta=\frac{3}{4} (Given)

tan\theta=\frac{3k}{4k},  where k is some positive real number.

Since, tan\theta=\frac{Opposite}{Adjacent}

tan\theta=\frac{AB}{BC}

\frac{AB}{BC} =\frac{3k}{4k} (∵ Things which are equal to the same thing, are equal to one another)

AB=3k,BC=4k

By Pythagoras Theorem,

AC^2=AB^2+BC^2

AC^2=(3k)^2+(4k)^2

AC^2=9k^2+16k^2

AC^2=25k^2

AC=5k

sin\theta=\frac{Opposite}{Hypotenuse}

sin\theta=\frac{AB}{AC}

sin\theta=\frac{3k}{5k}

sin\theta=\frac{3}{5}

cos\theta=\frac{Adjacent}{Hypotenuse}

cos\theta=\frac{BC}{AC}

cos\theta=\frac{4k}{5k}

cos\theta=\frac{4}{5}

\frac{1}{sin\theta}+\frac{1}{cos\theta}

=\frac{sin\theta+cos\theta}{sin\theta cos\theta}

\frac{\frac{3}{5} +\frac{4}{5} }{\frac{3}{5} \times \frac{4}{5} }

\frac{\frac{3+4}{5} }{\frac{12}{5}  }

\frac{\frac{7}{5} }{\frac{12}{5}  }

\frac{7}{5} \times \frac{5}{12}

\frac{7}{12}

\frac{1}{sin\theta}+\frac{1}{cos\theta}=\frac{7}{12}

Attachments:
Similar questions