Math, asked by Muskaanzabi, 1 year ago

If tan theta=3/4, find the value of 1-cos theta/1+cos theta

Answers

Answered by Anonymous
2

Given,

tan( \theta)  =  \frac{3}{4}

To find out,

the \: value \: of \:  \frac{(1 -  \cos( \theta)) }{(1  +  \cos( \theta)) }

Solution:

 \tan(  \theta)  =  \frac{opposite \: side \: to \:  \theta}{adjacent \: side \: to \:  \theta}

 \tan( \theta) \:  =  \frac{3}{4}

Therefore, opposite side:adjacent side =3:4.

In the figure,

For angle A,opposite side =BC= 3k

Adjacent side = AB=4k

(Note:where k is any positive number)

Now, we have in triangle ABC.

By pythagoras theorem.

 {ac}^{2}  =  {ab}^{2}  +  {bc}^{2}

 {ac}^{2}  = {3k}^{2}  +  {4k}^{2}

 {ac}^{2}  = 25 {k}^{2}

ac \:  =  \sqrt{25 {k}^{2} }

ac \:  = 5k

Therefore the hypotenuse is 5k.

Now,

 \cos( \theta)  = \frac{adjacent \: side \: to \:  \theta}{hypotenuse}

 \cos( \theta)  =  \frac{3k}{5k}  =  \frac{3}{5}

 \frac{(1 -  \cos( \theta)) }{(1  +  \cos(  \theta)) }  =  \frac{(1 -  \frac{3}{5}) }{(1 +  \frac{3}{5}) }

  \frac{ \frac{5 - 3}{5} }{ \frac{5 + 3}{5} }

 \frac{ \frac{2}{5} }{ \frac{8}{5} }

 \frac{2}{5}  \times  \frac{5}{8}

 \frac{1}{4}

Therefore the value is 1/4.

Attachments:
Similar questions