Math, asked by Anonymous, 1 year ago

If tan theta = 3/4 then find the value of 2 sin theta + 3 cos theta.


hafeezhtech: tan = O/A => draw a right angle tri. and then apply the values and then find hyp., value of hyp. = 5 and then apply the values 2(3/5)+3(4/5)
hafeezhtech: 6/5+12/5 => 18/5

Answers

Answered by Kundank
4
Given
 \tan( \alpha ) = \frac{3}{4}
2 \sin( \alpha ) + 3 \cos( \alpha ) = x
Divide the equation by
 \cos( \alpha )
2 \tan( \alpha ) + 3 = x \sec( \alpha )
Square both side
 {(2 \tan( \alpha ) + 3)}^{2} = {(x \sec( \alpha ) )}^{2}
 {(2 \times \frac{3}{4} + 3 )}^{2} = {x}^{2} {(1 + { \tan( \alpha ) }^{2} ) )}
 {( \frac{9}{2} )}^{2} = {x}^{2} {(1 + \frac{9}{16} )}
 {x}^{2} = \frac{81}{16} \times \frac{4}{25}
 {x}^{2} = \frac{81×16}{25×4}
x = \sqrt{ \frac{81×16}{25×4} } = + - \frac{18}{5}

Anonymous: I like this Answer but it is way too complicatied
Anonymous: complicated*
Anonymous: Anyways good job but try to make an answer simpler
hafeezhtech: where did you find this question
Answered by hukam0685
0

The value of \bf2 \sin( \theta)  + 3 \cos( \theta) is 18/5.

Given:

  •  \tan( \theta) =  \frac{3}{4}

To find:

  • Value of 2 \sin( \theta)  + 3 \cos( \theta)

Solution:

Formula to be used:

  • tan \theta =  \frac{\text{side \: opposite \: to \: angle}}{\text{side \: adjacent\: to \: angle}}  \\
  • sin \theta =  \frac{\text{side \: opposite \: to \: angle}}{hypotenuse}  \\
  • cos\theta =  \frac{\text{side \: adjacent \: to \: angle}}{hypotenuse} \\

Step 1:

Find hypotenuse of right triangle.

As,

Ratio of base to perpendicular is given so find hypotenuse.

i.e.

 \tan( \theta) =\frac{AB}{AC}=  \frac{3k}{4k}  \\

Apply Pythagoras theorem

Hypotenuse² = Base² + Perpendicular²  CB^2= 9 {k}^{2} + 16 {k}^{2}  \\

Hypotenuse (CB)= 5k

Step 2:

Find sin theta form formula.

 \sin( \theta)  = \frac{AB}{CB} =\frac{3k}{5k}  \\

or

\bf \sin( \theta)  =  \frac{3}{5}  \\

Step 3:

Find cos theta from formula.

 \cos( \theta)  = \frac{AC}{CB}= \frac{4k}{5k}  \\

or

\bf \cos( \theta)  =  \frac{4}{5}  \\

Step 4:

Put the values in expression

 = 2   \times  \frac{3}{5}  + 3 \times  \frac{4}{5} \\

or

 =  \frac{6}{5}  +  \frac{12}{5}  \\

or

 2 \sin( \theta)  + 3 \cos( \theta) =   \frac{18}{5}  \\

Thus,

\bf 2 \sin( \theta)  + 3 \cos( \theta) =  \frac{18}{5}  \\

Learn more:

1. If sin x =3/5 and cos y =12/13, evaluate:

i)sec2 x

ii)tan x + tan y

https://brainly.in/question/4617646

2) if 21 cosec theta =29 find the value of cossquare theta-sinsquare theta/1-2sinsquare theta

https://brainly.in/question/21135044

Attachments:
Similar questions