If tan theta = 3/4 then find the value of cos 2 theta - sin 2 theta.
Answers
Answered by
31
sin(θ) = 2/5 , 90° ≤ θ ≤ 180°.
sin(β) = 1/2 , 0° ≤ β ≤ 90°.
1) sin²(β) + cos²(β) = 1
cos²(β) = 1 - sin²(β)
= 1 - (1/2)² = 3/4
cos(β) = ±½√3 . Note however that cos is positive on [0, 90> , so
cos(β) = ½√3
2)
sec²(β) ≡ 1/cos²(β) = 4/3
3)
tan(θ) = sin(θ)/cos(θ)
= sin(θ) / ( - √(1-sin²(θ) ) [minus sign because cos is negative on interval <90,180>]
= (2/5) / ( - √( 1 - 4/25) )
= -2 / √21
4)
cosec(β) + tan(90-θ) =
1/sin(β) + 1/tan(θ) =
1/ (1/2) + (-(√21) /2) =
2 - ½√21
sin(β) = 1/2 , 0° ≤ β ≤ 90°.
1) sin²(β) + cos²(β) = 1
cos²(β) = 1 - sin²(β)
= 1 - (1/2)² = 3/4
cos(β) = ±½√3 . Note however that cos is positive on [0, 90> , so
cos(β) = ½√3
2)
sec²(β) ≡ 1/cos²(β) = 4/3
3)
tan(θ) = sin(θ)/cos(θ)
= sin(θ) / ( - √(1-sin²(θ) ) [minus sign because cos is negative on interval <90,180>]
= (2/5) / ( - √( 1 - 4/25) )
= -2 / √21
4)
cosec(β) + tan(90-θ) =
1/sin(β) + 1/tan(θ) =
1/ (1/2) + (-(√21) /2) =
2 - ½√21
Answered by
183
hope it would help you...
Attachments:
Similar questions