if tan theta = 3, then 5[cos theta/4] =
please explain
Answers
Answered by
0
Given,
5tanθ=3
∴tanθ=
5
3
Now,
4sinθ+3cosθ
5sinθ−3cosθ
=
4tanθ+3
5tanθ−3
[dividing numerators and denominator by cosθ]
=
4(
5
3
)+3
5(
5
3
)−3
=
5
12
+3
3−3
=
5
12
+3
0
=0
∴
4sinθ+3cosθ
5sinθ−3cosθ
=0
5tanθ=3
∴tanθ=
5
3
Now,
4sinθ+3cosθ
5sinθ−3cosθ
=
4tanθ+3
5tanθ−3
[dividing numerators and denominator by cosθ]
=
4(
5
3
)+3
5(
5
3
)−3
=
5
12
+3
3−3
=
5
12
+3
0
=0
∴
4sinθ+3cosθ
5sinθ−3cosθ
=0
Answered by
2
tan theta =3 /1
9+1=s^2
s=√10
cos theta=1/ √10
5[1/√10/5]=5[1/√10* 1/4]
=5[1/4√10]
=5/4√10
Similar questions