Math, asked by mohammad1568, 1 year ago

If tan theta=4/3, show that √1-sin theta /√1+sin theta = 1/3

Answers

Answered by BEJOICE
67

  given \:  \:  \tan \theta =  \frac{4}{3}   -  -  - (1)\\  \sec \theta =  \sqrt{1 +  { \tan }^{2} \theta}  =  \frac{5}{3} -  -  - (2) \\ \frac{ \sqrt{1  -  \sin \theta } }{\sqrt{1   +   \sin \theta } }  =  \sqrt{ \frac{1  -  \sin \theta}{1   +   \sin \theta} }  \\  = \sqrt{ \frac{ {(1  -  \sin \theta)}^{2} }{(1   +   \sin \theta)(1  -  \sin \theta)} } \\  =  \sqrt{ \frac{ {((1  -  \sin \theta))}^{2} }{ { \cos }^{2}  \theta} }  =  \frac{(1  -  \sin \theta)}{ \cos\theta}  \\  =  \sec \theta -  \tan \theta \\ substituting \:  \: from \:  \: (1) \:  \: and \:  \: (2) \\  =  \frac{5}{3}  -  \frac{4}{3}  =  \frac{1}{3}
Answered by wifilethbridge
21

Answer:

Tan \theta = \frac{Perpendicular}{Base}

We are given that tan \theta = \frac{4}{3}

So, On comparing

Perpendicular = 4

Base = 3

To Find Hypotenuse We will use Pythagoras theorem :

Hypotenuse^2=Perpendicular^2+Base^2

Hypotenuse^2=4^2+3^2

Hypotenuse^2=16+9

Hypotenuse^2=25

Hypotenuse=\sqrt{25}

Hypotenuse=5

Sin \tehta = \frac{Perpendicular}{Hypotenuse}

So, Sin \tehta = \frac{4}{5}

We are supposed to find \frac{\sqrt{1-sin \theta}}{\sqrt{1+sin \theta}}

Substitute the value

\frac{\sqrt{1-\frac{4}{5}}}{\sqrt{1+\frac{4}{5}}}

\frac{\sqrt{\frac{1}{5}}}{\sqrt{\frac{9}{5}}}

\frac{1}{3}

Hence  \frac{\sqrt{1-sin \theta}}{\sqrt{1+sin \theta}} = \frac{1}{3}

Similar questions