Math, asked by sandipkuar1884, 4 months ago

if tan theta = 4/3 then find the value of 5sin theta + 2 cos theta / 3 sin theta - cos theta ​

Answers

Answered by Ataraxia
52

Given :-

\sf tan \theta = \dfrac{4}{3}

To Find :-

\sf \dfrac{5 sin \theta + 2 cos \theta}{3 sin \theta - cos \theta}

Solution :-

We know :-

\bf\dag \ sec^2 \theta = 1+ tan^2 \theta

\sf : \implies sec^2 \theta = 1+ \left( \dfrac{4}{3} \right)^2

\sf : \implies sec^2 \theta = 1 + \dfrac{16}{9}

\sf : \implies sec^2 \theta = \dfrac{25}{9}

\sf : \implies sec \theta = \dfrac{5}{3}

We know :-

\bf\dag \ cos \theta = \dfrac{1}{sec\theta}

\sf : \implies cos \theta = \dfrac{3}{5}

We know :-

\bf\dag \ sin \theta = cos \theta tan \theta

\sf : \implies sin \theta = \dfrac{3}{5} \times \dfrac{4}{3}

\sf : \implies sin \theta = \dfrac{4}{5}

\sf : \implies \dfrac{5 sin \theta + 2 cos \theta }{3 sin \theta - cos \theta }= \dfrac{5 \times \dfrac{4}{5}+ 2 \times \dfrac{3}{5}}{3 \times \dfrac{4}{5}- \dfrac{3}{5}}

\sf : \implies \dfrac{5 sin \theta + 2 cos \theta }{ 3sin \theta - cos \theta }= \dfrac{4+\dfrac{6}{5}}{\dfrac{12}{5} - \dfrac{3}{5}}

\sf : \implies \dfrac{5sin \theta +2 cos \theta}{3 sin \theta - cos \theta }= \dfrac{\dfrac{(4\times 5 )+6}{5}}{\dfrac{12-3}{5}}

\sf : \implies \dfrac{5sin \theta +2 cos \theta}{3 sin \theta - cos \theta }= \dfrac{26}{5} \times \dfrac{5}{9}

\bf : \implies \dfrac{5sin \theta +2 cos \theta}{3 sin \theta - cos \theta } = \dfrac{26}{9}

Answered by Vaibhavhoax
2

Glad to help you!

thanks

Attachments:
Similar questions