Math, asked by bynalikitha5426, 1 year ago

If tan theta 4/3 what is the value of sin theta+ cos theta/ sin theta- cos theta

Answers

Answered by ShuchiRecites
8

Given: tan∅ = 4/3

  • Perpendicular = 4
  • Base = 3

→ H² = 4² + 3²

→ H² = 25

H = ±5

(Here taking value as + 5)

sin∅ = Perpendicular/Hypotenuse = 4/5

cos∅ = Base/Hypotenuse = 3/5

→ (sin∅ + cos∅)/(sin∅ - cos∅)

By substituting values we get,

→ (4/5 + 3/5)/(4/5 - 3/5)

→ 7/5 × 5

→ 7

Hence correct answer is 7.

Answered by Anonymous
14

\textbf{\underline{\underline{According\:to\:the\:Question}}}

\tt{\rightarrow tan\theta = \dfrac{4}{3}}

✔As we know that :-

\tt{\rightarrow tan\theta = \dfrac{Perpendicular}{Base}}

✔Here we get the values of perpendicular and base :-

Perpendicular = 4

Base = 3

✔Now we have to find Hypotenuse

✔Using Pythagoras theorem,

\tt{\rightarrow H = \sqrt{P^{2} + B^{2}}}

\tt{\rightarrow H = \sqrt{4^{2} + 3^{2}}}

\tt{\rightarrow H = \sqrt{16+9}}

\tt{\rightarrow \sqrt{25}}

Hypotenuse = 5

Now :-

\tt{\rightarrow sin\theta = \dfrac{4}{5}}

\tt{\rightarrow cos\theta = \dfrac{3}{5}}

✔Substitute the values :-

\tt{\rightarrow\dfrac{sin\theta+cos\theta}{sin\theta-cos\theta}}

= 4/5 + 3/5 ÷ 4/5 - 3/5

= (4 + 3/5) ÷ (4 - 3/5)

= (7/5) ÷ (1/5)

\tt{\rightarrow\dfrac{7}{5}\times \dfrac{5}{1}}

\tt{\rightarrow tan\theta = \dfrac{7}{1}}

= 7

Similar questions