Math, asked by vishu1700, 1 year ago

if tan theta+4/5=5,find sin theta and cos theta

Answers

Answered by irfanyakub364
0
Let theta be
 \alpha
 \tan( \alpha )  +  \frac{4}{5}  = 5
 \tan( \alpha )  = 5 -  \frac{4}{5}
 \tan( \alpha )  =  \frac{21}{5}
We know
 \tan( \alpha )  =  \frac{opp}{adj}
 \sin( \alpha )  =  \frac{opp}{hyp}
 \cos( \alpha )  =  \frac{adj}{hyp}
Where
hyp =  \sqrt{ {opp}^{2} +{adj^{2} } }
Therefore hyp from above formula is
hyp =  \sqrt{ {21}^{2} +  {5}^{2}  }
hyp =  \sqrt{ 441 + 21 }
hyp =  \sqrt{466}
 \sin( \alpha )  = \frac{21}{ \sqrt{466} }
 \cos( \alpha )  =  \frac{5}{ \sqrt{466} }
Similar questions