Math, asked by chandan5647, 11 months ago

if tan theta = 4/5 then 1-cos theta/1+cos theta​

Answers

Answered by lublana
6

Answer:

\frac{1-cos\theta}{1+cos\theta}=\frac{66-10\sqrt{41}}{16}

Step-by-step explanation:

We are given that

tan\theta=\frac{4}{5}

We have to find the value of \frac{1-cos\theta}{1+cos\theta}

We know that tan\theta=\frac{perpendicular\;arm}{Base}

Compare with the given values of tangent then we get

Perpendicular arm of triangle =4 units

Base of triangle =5 units

Using Pythogorous theorem

 (Hypotenuse)^2=(Base)^2+(Perpendicular arm)^2

Therefore,  (Hypotenuse)^2=(4)^2+(5)^2

(Hypotenuse)^2=16+25=41

Hypotenuse=\sqrt{41}

cos\theta=\frac{Base}{hypotenuse}

cos\theta=\frac{5}{\sqrt{41}}

Substitute the value then we get

\frac{1-cos\theta}{1+cos\theta}=\frac{1-\frac{5}{\sqrt{41}}}{1+\frac{5}{\sqrt{41}}}

\frac{1-cos\theta}{1+cos\theta}=\frac{\sqrt{41}-5}{\sqrt{41}+5}

Using rationalization property

\frac{a-b}{a+b}=\frac{(a-b)(a-b)}{(a+b)(a-b)}

\frac{1-cos\theta}{1+cos\theta}=\frac{(\sqrt{41}-5)(\sqrt{41}-5)}{(\sqrt{41}-5)(\sqrt{41}+5)}

\frac{1-cos\theta}{1+cos\theta}=\frac{41+25-10\sqrt{41}}{41-25}

Using property : (a-b)^2=a^2+b^2-2 ab

a^2-b^2=(a+b)(a-b)

\frac{1-cos\theta}{1+cos\theta}=\frac{66-10\sqrt{41}}{16}

Similar questions