Math, asked by sanjuktaanwesha, 12 hours ago

if tan theta-4/tan theta = 3 then sin2 theta is​....please answer this with detailed solution

Answers

Answered by Manmohan04
12

Given,

\[\tan \theta  - \frac{4}{{\tan \theta }} = 3\]

Solution,

Calculate the value of \[\tan \theta \]

\[\tan \theta  - \frac{4}{{\tan \theta }} = 3\]

\[\begin{array}{l} \Rightarrow {\tan ^2}\theta  - 4 = 3\tan \theta \\ \Rightarrow {\tan ^2}\theta  - 3\tan \theta  - 4 = 0\\ \Rightarrow {\tan ^2}\theta  - 4\tan \theta  + \tan \theta  - 4 = 0\\ \Rightarrow \tan \theta \left( {\tan \theta  - 4} \right) + 1\left( {\tan \theta  - 4} \right) = 0\\ \Rightarrow \left( {\tan \theta  + 1} \right)\left( {\tan \theta  - 4} \right) = 0\\ \Rightarrow \tan \theta  =  - 1,4\end{array}\]

Now calculate the value of \[sin2\theta \].

When \[\tan \theta  =  - 1\],

\[\begin{array}{l} = sin2\theta \\ = \frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\\ = \frac{{2 \times \left( { - 1} \right)}}{{1 + {{\left( { - 1} \right)}^2}}}\\ =  - 2\end{array}\]

When\[\tan \theta  =  4\],

\[\begin{array}{l} = sin2\theta \\ = \frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\\ = \frac{{2 \times 4}}{{1 + {4^2}}}\\ = \frac{8}{{17}}\end{array}\]

Hence the value of \[sin2\theta \] will be \[ - 2,\frac{8}{{17}}\].

Answered by isha00333
11

Given:

\[\tan \theta  - \frac{4}{{\tan \theta }} = 3\]

Solution:

Simplify the given equation.

\[\begin{array}{l}\tan \theta  - \frac{4}{{\tan \theta }} = 3\\ \Rightarrow {\tan ^2}\theta  - 4 = 3\tan \theta \\ \Rightarrow {\tan ^2}\theta  - 3\tan \theta  - 4 = 0\end{array}\]------(1)

Assume that, \[x = \tan \theta \].

Substitute in equation (1).

\[\begin{array}{l} \Rightarrow {x^2} - 3x - 4 = 0\\ \Rightarrow {x^2} - 4x + x - 4 = 0\\ \Rightarrow x\left( {x - 4} \right) + 1\left( {x - 4} \right) = 0\\ \Rightarrow x =  - 1,4\end{array}\]

Therefore,

\[ \Rightarrow \tan \theta  =  - 1,4\]

Know that, \[\tan \theta  = \frac{{\sin \theta }}{{\cos \theta }}\].

Take reciprocal and square both the sides.

\[\begin{array}{l} \Rightarrow \frac{1}{{\tan \theta }} = \frac{{\cos \theta }}{{\sin \theta }}\\ \Rightarrow {\left( {\frac{1}{{\tan \theta }}} \right)^2} = \frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}\end{array}\]

Add 1 both sides on the above equation,

\[\begin{array}{l} \Rightarrow {\left( {\frac{1}{{\tan \theta }}} \right)^2} + 1 = \frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }} + 1\\ \Rightarrow {\left( {\frac{1}{{\tan \theta }}} \right)^2} + 1 = \frac{{{{\cos }^2}\theta  + {{\sin }^2}\theta }}{{{{\sin }^2}\theta }}\\ \Rightarrow {\left( {\frac{1}{{\tan \theta }}} \right)^2} + 1 = \frac{1}{{{{\sin }^2}\theta }}\end{array}\]

\[ \Rightarrow {\sin ^2}\theta  = \frac{1}{{{{\left( {\frac{1}{{\tan \theta }}} \right)}^2} + 1}}\]

Take\[\tan \theta  =  - 1\].

\[ \Rightarrow {\sin ^2}\theta  = \frac{1}{{{{\left( {\frac{1}{{ - 1}}} \right)}^2} + 1}}\]

\[ \Rightarrow {\sin ^2}\theta  = \frac{1}{{1 + 1}}\]

\[ \Rightarrow {\sin ^2}\theta  = \frac{1}{2}\]

Take \[\tan \theta  = 4\].

\[ \Rightarrow {\sin ^2}\theta  = \frac{1}{{{{\left( {\frac{1}{4}} \right)}^2} + 1}}\]

\[ \Rightarrow {\sin ^2}\theta  = \frac{1}{{\frac{1}{{16}} + 1}}\]

\[ \Rightarrow {\sin ^2}\theta  = \frac{1}{{\frac{{1 + 16}}{{16}}}}\]

\[ \Rightarrow {\sin ^2}\theta  = \frac{{16}}{{17}}\]

Hence, the values of \[{\sin ^2}\theta \]are \[\frac{1}{2},\frac{{16}}{{17}}\].

Similar questions