Math, asked by shona05, 11 months ago

if tan theta =5/12,find value of cos theta+sin theta /cos theta -sin theta.......​

Answers

Answered by PRATHAMABD
27

Given :- tan\theta = \frac{5}{12}

tan\theta=\frac{p}{b}=\frac{5}{12}

h^2=\sqrt{5^2}+{12^2}

\sqrt{25}+{144}

h = 13.

Now , we have to find value of :---

cos\theta+sin\theta

_______________

cos\theta - sin\theta

\frac{12}{13}+\frac{5}{13}

----------------------

\frac{12}{13} - \frac{5}{13}

\frac{12+5}{13}

----------------------

\frac{12-5}{13}

= \frac{17}{13}

----------------------

\frac{7}{13}

=\frac{17}{13} X \frac{13}{7}

\frac{17}{7} Ans.

Attachments:
Answered by wifilethbridge
47

\frac{Cos \theta +Sin \theta}{Cos \theta - Sin \theta} =\frac{17}{7}

Step-by-step explanation:

Tan \theta = \frac{Perpendicular}{Base}

We are given that Tan \theta = \frac{5}{12}

On comparing ,

Perpendicular = 5

Base = 12

To find Hypotenuse we will use Pythagoras theorem

Hypotenuse^2 = Perpendicular^2+Base^2\\Hypotenuse^2 = 5^2+12^2\\Hypotenuse=\sqrt{5^2+12^2}\\Hypotenuse = 13

Sin \theta = \frac{Perpendicular}{Hypotenuse}

Sin \theta = \frac{5}{13}

Cos\theta = \frac{Base}{Hypotenuse}

Cos\theta = \frac{12}{13}

So, \frac{Cos \theta +Sin \theta}{Cos \theta - Sin \theta} = \frac{\frac{12}{13}+\frac{5}{13}}{\frac{12}{13}-\frac{5}{13}}=\frac{17}{7}

Hence \frac{Cos \theta +Sin \theta}{Cos \theta - Sin \theta} =\frac{17}{7}

#Learn more :

If 5 tan theta is equal to 12 find the value of cos theta and sin theta

https://brainly.in/question/7549063

Similar questions