Math, asked by norzinnnnnnnnn, 1 month ago

if tan theta = 5/12, show that tan^2 theta - sin^2 theta = Sin^4 theta sec^2 theta​

Answers

Answered by tennetiraj86
2

Step-by-step explanation:

Given :-

Tan θ = 5/12

To find :-

Show that Tan² θ - Sin² θ = Sin⁴ θ Sec² θ

Solution :-

Given that

Tan θ = 5/12

=> 1/Tan θ = 1/(5/12)

=> Cot θ = 12/5

On squaring both sides then

=> (Cot θ)² = (12/5)²

=> Cot² θ = 144/25

On adding 1 both sides then

=> 1+ Cot² θ = 1+(144/25)

=> 1+Cot² θ = (25+144)/25

=> Cosec² θ = 169/25

Since Cosec² θ - Cot² θ = 1

=> 1/Sin² θ = 169/25

=> Sin² θ = 25/169

=> 1-Sin² θ = 1-(25/169)

=> 1-Sin² θ = (169-25)/169

=> 1- Sin² θ = 144/169

=> Cos² θ = 144/169

Since Sin² A + Cos² A = 1

=> Cos θ = √(144/169)

=> Cos θ = 12/13

=> 1/Cos θ = 1/(12/13)

=> Sec θ = 13/12

=> Sec² θ = (13/12)²

=> Sec² θ = 169/144

Now

On taking LHS

Tan² θ - Sin² θ

=> (25/144) - (25/169)

=> 25[(1/144)-(1/169)]

=> 25[(169-144)/24336]

=> 25(25/24336)

=> (25×25)/(24336)

=> 625/24336 ------------------(1)

On taking RHS

Sin⁴ θ Sec² θ

=> (25/169)² ×(169/144)

=> (625×169)/(169×169×144)

=>625/(169×144)

=> 625/24336 -----------------(2)

From (1) &(2)

LHS = RHS

Tan² θ - Sin² θ = Sin⁴ θ Sec² θ

Hence, Proved.

Used formulae:-

→ Cosec² A - Cot² A = 1

→ Sin² A + Cos² A = 1

→ Cosec A = 1/Sin A

→ Sec A = 1/Cos A

→ Cot A = 1/Tan A

Answered by shivasinghmohan629
0

Step-by-step explanation:

tan theta = 5/12

sec2 theta = 1 + tan2 theta

= 1 + 25/144 = 144+25/144 =

44

4.0

Math

10 points

Vol 86

169/144

sec theta = 13/12

cos theta = 1/ sec theta = 12/13

cos2 theta + sin2 theta =1

sin2 theta = 1- cos2 theta

= 1- 144/169 = 169-144/169 =

25/169

sin theta = root of 25/ 169 = 5/13

Similar questions