if tan theta = -5/12 then find the value of (2 cos theta )/(1- sin theta)
Answers
Answer:
Cosθ+Sinθ=717
Step-by-step explanation:
Tan \theta = \frac{Perpendicular}{Base}Tanθ=BasePerpendicular
We are given that Tan \theta = \frac{5}{12}Tanθ=125
On comparing ,
Perpendicular = 5
Base = 12
To find Hypotenuse we will use Pythagoras theorem
\begin{gathered}Hypotenuse^2 = Perpendicular^2+Base^2\\Hypotenuse^2 = 5^2+12^2\\Hypotenuse=\sqrt{5^2+12^2}\\Hypotenuse = 13\end{gathered}Hypotenuse2=Perpendicular2+Base2Hypotenuse2=52+122Hypotenuse=52+122Hypotenuse=13
Sin \theta = \frac{Perpendicular}{Hypotenuse}Sinθ=HypotenusePerpendicular
Sin \theta = \frac{5}{13}Sinθ=135
Cos\theta = \frac{Base}{Hypotenuse}Cosθ=HypotenuseBase
Cos\theta = \frac{12}{13}Cosθ=1312
So, \frac{Cos \theta +Sin \theta}{Cos \theta - Sin \theta} = \frac{\frac{12}{13}+\frac{5}{13}}{\frac{12}{13}-\frac{5}{13}}=\frac{17}{7}Cosθ−SinθCosθ+Sinθ=1312−1351312+135=717
Hence \frac{Cos \theta +Sin \theta}{Cos \theta - Sin \theta} =\frac{17}{7}Cosθ−SinθCosθ+Sinθ=717
Step-by-step explanation:
please mark my answer
Answer:
Cosθ+Sinθ=717
Step-by-step explanation:
Tan \theta = \frac{Perpendicular}{Base}Tanθ=BasePerpendicular
We are given that Tan \theta = \frac{5}{12}Tanθ=125
On comparing ,
Perpendicular = 5
Base = 12
To find Hypotenuse we will use Pythagoras theorem
\begin{gathered}Hypotenuse^2 = Perpendicular^2+Base^2\\Hypotenuse^2 = 5^2+12^2\\Hypotenuse=\sqrt{5^2+12^2}\\Hypotenuse = 13\end{gathered}Hypotenuse2=Perpendicular2+Base2Hypotenuse2=52+122Hypotenuse=52+122Hypotenuse=13
Sin \theta = \frac{Perpendicular}{Hypotenuse}Sinθ=HypotenusePerpendicular
Sin \theta = \frac{5}{13}Sinθ=135
Cos\theta = \frac{Base}{Hypotenuse}Cosθ=HypotenuseBase
Cos\theta = \frac{12}{13}Cosθ=1312
So, \frac{Cos \theta +Sin \theta}{Cos \theta - Sin \theta} = \frac{\frac{12}{13}+\frac{5}{13}}{\frac{12}{13}-\frac{5}{13}}=\frac{17}{7}Cosθ−SinθCosθ+Sinθ=1312−1351312+135=717
Hence \frac{Cos \theta +Sin \theta}{Cos \theta - Sin \theta} =\frac{17}{7}Cosθ−SinθCosθ+Sinθ=717
Step-by-step explanation:
please mark my answer