Math, asked by ks2289980, 1 year ago

if tan theta =5,where theta is an acute angle ,find sec theta using the identity

Answers

Answered by Anonymous
53

The value of sec\alpha is given by

\sec\alpha  = \sqrt{26}

  • We have

       tan\alpha = 5 , where \alpha is an acute angle

       therefore

       {tan}^{2} \alpha  \:   = 25

  • Now, using the identity

        {tan}^{2} \alpha  + 1 =  {sec}^{2} \alpha  \:

  • therefore,

         

 \sec⊖ = ± \: \sqrt{26}

Answered by harendrachoubay
79

\sec\theta=\sqrt{26}

Step-by-step explanation:

We have,

\tan \theta =5, where, \theta is an acute angle

To find, the value of \sec \theta=?

We know that, trigonometric identity

\sec^2 \theta-\tan^2 \theta=1

\sec^2 \theta=1+\tan^2 \theta

\sec\theta=\sqrt{1+\tan^2 \theta}

\sec\theta=\sqrt{1+5^2}

=\sqrt{1+25}=\sqrt{26} (since, first quadrant only + sign)

\sec\theta=\sqrt{26}

Thus, \sec\theta=\sqrt{26}

Similar questions