If tan theta A=5/6 tan B= 1/11 then show that A+B=pai/4
Answers
Question:
If tanA = 5/6 and tanB = 1/11 then show that
A + B = π/4 .
Note:
• tan(A+B) = (tanA + tanB)/(1 - tanA•tanB)
• tan(A-B) = (tanA - tanB)/(1 + tanA•tanB)
• tan0 = 0
• tan(π/6) = 1/√3
• tan(π/4) = 1
• tan(π/3) = √3
• tan(π/2) = ∞
Solution:
Given:
tanA = 5/6
tanB = 1/11
To prove:
A + B = π/4
We have;
tanA = 5/6
tanB = 1/11
Now;
=> tan(A+B) = (tanA + tanB)/(1 - tanA•tanB)
=> tan(A+B) = (5/6 + 1/11)/{1 - (5/6)•(1/11)}
=> tan(A+B) = (5/6 + 1/11)/(1 - 5/66)
=> tan(A+B) = {(55+6)/66}/{(66-5)/66}
=> tan(A+B) = (61/66)/(61/66)
=> tan(A+B) = 1
=> tan(A+B) = tan(π/4)
=> A + B = π/4
Hence proved.
Answer:
We have the following values:
tanA= 5/6.
tanB = 1/11.
Now,
tan(A+B) = (tanA + tanB)/(1 - tanA•tanB).
tan(A+B)= (5/6 + 1/11)/{1-(5/6)•(1/11)}.
tan(A+B)= (5/6 + 1/11)/{1 -5/66).
tan(A+B)={(55+6)/66}/{(66-5)/66}.
tan(A+B)=(61/66)/(61/66).
tan(A+B) = 1.
tan(A+B) = tan(pi/4)
hence A+B=PI/4
HENCE PROVED