Math, asked by pulkitjolly, 1 year ago

if tan theta = a/b . find the value of cos theta +sin theta/cos theta-sin theta

Answers

Answered by raghavguptapunjab36
392
Try understanding my writing.
Attachments:
Answered by hotelcalifornia
123

Answer:

The result of \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } is found out to be \frac { \mathrm { a } + \mathrm { b } } { \mathrm { b } - \mathrm { a } }

To find:

The result of \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta }  when \tan \theta = \frac { \mathrm { a } } { \mathrm { b } }

Solution:

Given that the value of \tan \theta = \frac { \mathrm { a } } { \mathrm { b } }

The value of \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } is determined by dividing the numerator and denominator by \cos \theta

\begin{array} { c } { \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } = \frac { \frac { \cos \theta } { \cos \theta } + \frac { \sin \theta } { \cos \theta } } { \frac { \cos \theta } { \cos \theta } - \frac { \sin \theta } { \cos \theta } } } \\\\ { = \frac { 1 + \tan \theta } { 1 - \tan \theta } } \end{array}

We know that \tan \theta = \frac { \mathrm { a } } { \mathrm { b } }, as per the given question,

\begin{aligned} & = \frac { 1 + \frac { \mathrm { a } } { \mathrm { b } } } { 1 - \frac { \mathrm { a } } { \mathrm { a } } } \\\\ & = \frac { \frac { \mathrm { b } + \mathrm { a } } { \mathrm { b } } } { \frac { \mathrm { b } - \mathrm { a } } { \mathrm { b } } } \\\\ = & \frac { \mathrm { b } + \mathrm { a } } { \mathrm { b } - \mathrm { a } } \\ \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } & = \frac { \mathrm { a } + \mathrm { b } } { \mathrm { b } - \mathrm { a } } \end{aligned}

Thus, the value of \frac { \cos \theta + \sin \theta } { \cos \theta - \sin \theta } = \frac { a + b } { b - a } when \tan \theta = \frac { a } { b }

Similar questions