if tan theta =a/b find the value of cos theta+sintheta/costheta-sin theta
Answers
Answered by
7
Answer:-
(Theta is taken as A).
Given:
tan A = a/b
→ Opposite side/Adjacent side = a/b
We know that,
(Hypotenuse)² = (Opposite side)² + (Adjacent side)²
→ (Hypotenuse)² = a² + b²
→ Hypotenuse = √(a² + b²)
→ Cos A = Adjacent side/Hypotenuse
→ Cos A = b/√(a² + b²)
→ Sin A = Opposite side/Hypotenuse
→ Sin A = a/√(a² + b²)
→ (Cos A + Sin A) = (b/√a² + b²) + (a/√a² + b²)
→ Cos A + Sin A = (b + a)/√a² + b²
Similarly,
→ Cos A - Sin A = (b - a)/√a² + b²
Hence,
(Cos A + Sin A)/(Cos A - Sin A) = [(b + a)/
√a² + b² ]/[(b - a)/√a² + b² ]
→ (Cos A + Sin A)/(Cos A - Sin A) = (b + a)/(b - a).
Similar questions