Math, asked by Roger29, 1 year ago

If tan theta =a/b, prove that a sin theta- b cos theta / a sin theta - b cos theta=a^2-b^2/a^2+b^2

Attachments:

Answers

Answered by abhi569
24

Note : Theta is written as A.

Given value of tanA is a / b, and from the properties of trigonometry we know that the value of tangent in terms of cosine and sine is cosine / sine.

TanA = sinA / cosA

According to the question : -

= > tanA = \dfrac{a}{b}

= > tanA =\sf \dfrac{sinA}{cosA}=\dfrac{a}{b} { from trigonometric properties }

= > =\sf \dfrac{sinA}{cosA}=\dfrac{a}{b}

Multiplying both sides by a / b.

= &gt; \sf \dfrac{ a }{ b} \times  \dfrac{ sinA }{ cosA }=  \dfrac{a }{b }  \times  \dfrac{a }{ b} \\  \\ </p><p>= &gt; \sf \dfrac{ asinA }{bcosA} =  \dfrac{ a^2 }{ b^2 }

Applying Componendo & Dividendo : -

Componendo & Dividendo : A term from ratio and proportional, according to this, if a fraction is equal to an another fraction{ let a / b is equal to x / y }, so ( a + b ) / ( a - b ) = ( x + y ) / ( x - y ).

Thus,

 \implies \sf \dfrac{  ( a sinA + b cosA ) }{( a sinA - b cosA )} = \dfrac{ ( a^2 + b^2 )}{ ( a^2 - b^2 )} \\  \\ \\  \implies \sf  \dfrac{ ( a^2  - b^2 )}{ ( a^2  + b^2 )} = \dfrac{  ( a sinA  -  b cosA ) }{( a sinA  + b cosA )} = \\  \\ \\

Hence proved.

Answered by Stylishboyyyyyyy
90

Solution :-

tan θ = a/b

sinθ/cosθ = a/b------(1)

LHS = (a sinθ- b cos θ)/(a sinθ + b cosθ)

= (asinθ/cosθ - bcosθ/cosθ)/(asinθ/cosθ+ bcosθ/cosθ)

dividing each term with cosθ

=(asinθ/cosθ-b/1)/(asinθ/cosθ+b/1)

=(a*a/b-b/1)/(a*a/b +b/1)

[from (1)]

= (a^2-b^2)/(a^2+b^2)

= RHS


kunalnawariya: its easier than above
Anonymous: very nice bro
Similar questions